Solving polynominals equations (relationship of roots)Quadratic equation - $alpha$ and $beta$ RootsTechnique...
Does holding a wand and speaking its command word count as V/S/M spell components?
How to reduce LED flash rate (frequency)
How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?
Why does academia still use scientific journals and not peer-reviewed government funded alternatives?
What was the first Intel x86 processor with "Base + Index * Scale + Displacement" addressing mode?
Binary Numbers Magic Trick
Unexpected email from Yorkshire Bank
Critique of timeline aesthetic
What does KSP mean?
Error message with tabularx
How to get a plain text file version of a CP/M .BAS (M-BASIC) program?
Don’t seats that recline flat defeat the purpose of having seatbelts?
Can SQL Server create collisions in system generated constraint names?
Noun clause (singular all the time?)
Pulling the rope with one hand is as heavy as with two hands?
The Defining Moment
How do I deal with a coworker that keeps asking to make small superficial changes to a report, and it is seriously triggering my anxiety?
Please, smoke with good manners
what is the sudo password for a --disabled-password user
US visa is under administrative processing, I need the passport back ASAP
Can I spend a night at Vancouver then take a flight to my college in Toronto as an international student?
Why does nature favour the Laplacian?
Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?
Rivers without rain
Solving polynominals equations (relationship of roots)
Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
17 hours ago
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
polynomials roots
edited 16 hours ago
Lee David Chung Lin
4,54351342
4,54351342
asked 17 hours ago
Alex Alex
286
286
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
17 hours ago
add a comment |
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
17 hours ago
1
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
17 hours ago
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
17 hours ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
answered 16 hours ago
user1952500user1952500
1,6241016
1,6241016
add a comment |
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
answered 15 hours ago
farruhotafarruhota
22.5k2942
22.5k2942
add a comment |
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
answered 16 hours ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79.9k42867
79.9k42867
add a comment |
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
answered 16 hours ago
Chris CusterChris Custer
14.7k3827
14.7k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
17 hours ago