Numerical value of Determinant far from what it is supposed to beNumeric values from transformFindRoot for...
ESPP--any reason not to go all in?
Should we avoid writing fiction about historical events without extensive research?
How do I increase the number of TTY consoles?
PTIJ: Who was the sixth set of priestly clothes for?
What can I do if someone tampers with my SSH public key?
How do we create new idioms and use them in a novel?
Finding the minimum value of a function without using Calculus
Idiom for feeling after taking risk and someone else being rewarded
Under what conditions can the right to remain silent be revoked in the USA?
What is the purpose of a disclaimer like "this is not legal advice"?
What should I do when a paper is published similar to my PhD thesis without citation?
I reported the illegal activity of my boss to his boss. My boss found out. Now I am being punished. What should I do?
Graphic representation of a triangle using ArrayPlot
Do Paladin Auras of Differing Oaths Stack?
If nine coins are tossed, what is the probability that the number of heads is even?
What is Tony Stark injecting into himself in Iron Man 3?
What do you call someone who likes to pick fights?
What would be the most expensive material to an intergalactic society?
Writing text next to a table
What does the Digital Threat scope actually do?
Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?
What does *dead* mean in *What do you mean, dead?*?
Trocar background-image com delay via jQuery
Is there a way to make cleveref distinguish two environments with the same counter?
Numerical value of Determinant far from what it is supposed to be
Numeric values from transformFindRoot for numerical function and how to search more than one rootCan't get a numerical value for this vector operationNumerical value of an expression with a uniform step sizeNumerical evaluation after Normal?Numerical Results with replacement rulesStrange numerical valuesWhat is the acceptable error in numerical calculations?High numerical precision failingHow to extract the minimal value from NMinimize?
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
New contributor
$endgroup$
add a comment |
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
New contributor
$endgroup$
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago
add a comment |
$begingroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
New contributor
$endgroup$
I have a large matrix with numerical components and want to set the determinant to zero using the parameter h
(see below). Naively, I would have expected that h
sets the determinant to (approximately) zero, which isn't the case. On top of that, the order of applying the rule sol
seems to affects the final outcome for a reason to don't see.
My output of the code below is:
{h -> -0.744736 + 4.42008 I}
0.0445865 - 0.0285418 I
0.0545654 - 0.114258 I
I am not familiar with how Mathematica handles floating point numbers so that's probably where my error lies. I have also tried to increase the precision with SetPrecision
, but without success.
mat={{0.16 - (0.36 + 0.001 I) h - (1.35808 -
0.00120116 I) h^2 - (0.49603 - 0.00137214 I) h^3 - (0.11307 -
0.00105331 I) h^4 + (0.249794 - 0.000384238 I) h^5 -
0.39204 h^6, -0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h - (1.15528 +
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000353051 - 1.67323*10^-6 I) h^4,
0}, {-0.1711 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.6394 -
0.00267142 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (11.3534 -
0.00119507 I) h^2 - (0.484268 - 0.00140481 I) h^3 - (5.0714 -
0.00114074 I) h^4 + (0.27061 - 0.000416258 I) h^5 -
0.42471 h^6, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (4.95742 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4), (0.0000484431 - 2.29589*10^-6 I) h^4}, {(0.0000353051 -
1.67323*10^-6 I) h^4, -0.223386 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (41.4016 -
0.00267502 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (29.348 -
0.00118803 I) h^2 - (0.470698 - 0.00144251 I) h^3 - (13.9095 -
0.00124106 I) h^4 + (0.294629 - 0.000453204 I) h^5 -
0.462406 h^6, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (19.0123 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 +
1. h^4)}, {0, (0.0000484431 -
2.29589*10^-6 I) h^4, -0.234771 h^2 ((-0.143205 +
0.000186623 I) - (0.36 + 0.001 I) h + (71.32 -
0.00267319 I) h^2 - (0.637164 - 0.0009801 I) h^3 + 1. h^4),
0.16 - (0.36 + 0.001 I) h - (55.3462 -
0.00118568 I) h^2 - (0.466163 - 0.0014551 I) h^3 - (26.6556 -
0.00127449 I) h^4 + (0.302655 - 0.000465551 I) h^5 -
0.475003 h^6}};
sol = Part[NSolve[Det[%] == 0, h], 1]
Det[mat /. sol]
Det[mat] /. sol
numerical-value
numerical-value
New contributor
New contributor
New contributor
asked 2 hours ago
NilsNils
61
61
New contributor
New contributor
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago
add a comment |
$begingroup$
Correction: I get the output0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.
$endgroup$
– Nils
2 hours ago
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and 0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
2 hours ago
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and 0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
add a comment |
$begingroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
$endgroup$
As you suspected when you mentioned SetPrecision
, you are encountering numerical errors, probably catastrophic loss of precision when calculating the determinant; your calculations do in fact need to be carried out at higher precision.
If possible, you would want to use exact numbers in your matrix, or take advantage of the arbitrary-precision capabilities of Mathematica. For instance, we can convert all machine-precision numbers to arbitrary-precision ones with a number of digits of precision equal to that of common machine-precision numbers on your machine using SetPrecision
(see also $MachinePrecision
in the documentation):
det = Det[SetPrecision[mat, $MachinePrecision]];
sol = NSolve[det == 0, h];
det /. sol // PossibleZeroQ
(* Out:
{True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True,
True, True}
*)
As you can see, all those values of $h$ do bring your determinant reasonably close to zero, within machine-precision approximations.
edited 2 hours ago
answered 2 hours ago
MarcoBMarcoB
37.3k556113
37.3k556113
add a comment |
add a comment |
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Nils is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192970%2fnumerical-value-of-determinant-far-from-what-it-is-supposed-to-be%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Correction: I get the output
0.118714 - 0.0526506 I
(as the second output) and0.106201 - 0.0979004 I
(as the third output); sorry, used a different matrix. But the problem still stands.$endgroup$
– Nils
2 hours ago