Do similar matrices have same characteristic equations?Jordan Canonical Form - Similar matrices and same...
What does *dead* mean in *What do you mean, dead?*?
Can't make sense of a paragraph from Lovecraft
Use Mercury as quenching liquid for swords?
What can I do if someone tampers with my SSH public key?
Is there a logarithm base for which the logarithm becomes an identity function?
Movie: boy escapes the real world and goes to a fantasy world with big furry trolls
Smooth vector fields on a surface modulo diffeomorphisms
What is Tony Stark injecting into himself in Iron Man 3?
What is this tube in a jet engine's air intake?
Do Paladin Auras of Differing Oaths Stack?
Count each bit-position separately over many 64-bit bitmasks, with AVX but not AVX2
Is there a way to make cleveref distinguish two environments with the same counter?
I am the person who abides by rules, but breaks the rules. Who am I?
One circle's diameter is different from others within a series of circles
Short scifi story where reproductive organs are converted to produce "materials", pregnant protagonist is "found fit" to be a mother
"If + would" conditional in present perfect tense
How can I portion out frozen cookie dough?
What sort of fish is this
How to educate team mate to take screenshots for bugs with out unwanted stuff
Can I negotiate a patent idea for a raise, under French law?
Why is it common in European airports not to display the gate for flights until around 45-90 minutes before departure, unlike other places?
Traveling to heavily polluted city, what practical measures can I take to minimize impact?
Has a sovereign Communist government ever run, and conceded loss, on a fair election?
Idiom for feeling after taking risk and someone else being rewarded
Do similar matrices have same characteristic equations?
Jordan Canonical Form - Similar matrices and same minimal polynomialsSimilar Matrices and Characteristic PolynomialsSame characteristic polynomial $iff$ same eigenvalues?If two matrices have the same characteristic polynomials, determinant and trace, are they similar?$3 times 3$ matrices are similar if and only if they have the same characteristic and minimal polynomialHow to prove two diagonalizable matrices are similar iff they have same eigenvalue with same multiplicity.Can two matrices with the same characteristic polynomial have different eigenvalues?Are these $4$ by $4$ matrices similar?are all these matrices similar?Matrices with given characteristic polynomial are similar iff the characteristic polynomial have no repeated roots
$begingroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
$endgroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
linear-algebra
asked 2 hours ago
Samurai BaleSamurai Bale
503
503
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142004%2fdo-similar-matrices-have-same-characteristic-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
add a comment |
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
add a comment |
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
edited 1 hour ago
J. W. Tanner
2,9541318
2,9541318
answered 1 hour ago
johnny133253johnny133253
384110
384110
add a comment |
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
answered 2 hours ago
copper.hatcopper.hat
127k559160
127k559160
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142004%2fdo-similar-matrices-have-same-characteristic-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown