How to calculate the two limits? The Next CEO of Stack OverflowCompute $lim limits_{xtoinfty}...

Can Sneak Attack be used when hitting with an improvised weapon?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

IC has pull-down resistors on SMBus lines?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Help! I cannot understand this game’s notations!

Is there a difference between "Fahrstuhl" and "Aufzug"?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

What day is it again?

Ising model simulation

Physiological effects of huge anime eyes

Why am I getting "Static method cannot be referenced from a non static context: String String.valueOf(Object)"?

Man transported from Alternate World into ours by a Neutrino Detector

How to calculate the two limits?

Is there a reasonable and studied concept of reduction between regular languages?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Is it okay to majorly distort historical facts while writing a fiction story?

Yu-Gi-Oh cards in Python 3

How to use ReplaceAll on an expression that contains a rule

Is Nisuin Biblical or Rabbinic?

Are the names of these months realistic?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Is it ok to trim down a tube patch?

Point distance program written without a framework

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device



How to calculate the two limits?



The Next CEO of Stack OverflowCompute $lim limits_{xtoinfty} (frac{x-2}{x+2})^x$limits of the sequence $n/(n+1)$How to calculate $lim_{xto1}left(frac{1+cos(pi x)}{tan^2(pi x)}right)^{!x^2}$Calculate the limit of integralHow to evaluate $lim_{xtoinfty}arctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_{x to infty}(x+1)e^{-2x}$How to calculate $lim_{nto infty } frac{n^n}{n!^2}$?Calculate the limit: $lim limits_{n rightarrow infty } frac {4(n+3)!-n!}{n((n+2)!-(n-1)!)}$How to solve the limit $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$












2












$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















2












$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago














2












2








2





$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$





I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







lanse7pty

















asked 2 hours ago









lanse7ptylanse7pty

1,8361823




1,8361823












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago


















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago










4 Answers
4






active

oldest

votes


















1












$begingroup$

Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Without L'Hospital
    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



    Now, by Taylor for large values of $x$
    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        You can solve the first one using




        • $arctan x + operatorname{arccot}x = frac{pi}{2}$

        • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

        • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


        begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
        & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
        & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
        end{eqnarray*}



        The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





        • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






        share|cite









        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






          share|cite|improve this answer











          $endgroup$


















            1












            $begingroup$

            Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






            share|cite|improve this answer











            $endgroup$
















              1












              1








              1





              $begingroup$

              Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






              share|cite|improve this answer











              $endgroup$



              Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 1 hour ago

























              answered 2 hours ago









              Paras KhoslaParas Khosla

              2,726423




              2,726423























                  1












                  $begingroup$

                  Without L'Hospital
                  $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                  Now, by Taylor for large values of $x$
                  $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                  $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                  $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                  $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Without L'Hospital
                    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Without L'Hospital
                      $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                      $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                      $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                      $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                      share|cite|improve this answer









                      $endgroup$



                      Without L'Hospital
                      $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                      $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                      $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                      $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 1 hour ago









                      Claude LeiboviciClaude Leibovici

                      125k1158136




                      125k1158136























                          0












                          $begingroup$

                          I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                              share|cite|improve this answer









                              $endgroup$



                              I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 hours ago









                              AdmuthAdmuth

                              185




                              185























                                  0












                                  $begingroup$

                                  You can solve the first one using




                                  • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                  • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                  • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                  begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                  & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                  & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                  end{eqnarray*}



                                  The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                  • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






                                  share|cite









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    You can solve the first one using




                                    • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                    • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                    • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                    begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                    & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                    & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                    end{eqnarray*}



                                    The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                    • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






                                    share|cite









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      You can solve the first one using




                                      • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                      • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                      • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                      begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                      & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                      & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                      end{eqnarray*}



                                      The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                      • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






                                      share|cite









                                      $endgroup$



                                      You can solve the first one using




                                      • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                      • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                      • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                      begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                      & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                      & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                      end{eqnarray*}



                                      The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                      • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.







                                      share|cite












                                      share|cite



                                      share|cite










                                      answered 2 mins ago









                                      trancelocationtrancelocation

                                      13.4k1827




                                      13.4k1827






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

                                          Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

                                          Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...