A curious equality of integrals involving the prime counting function?How many primes does this sequence...

What happens when the wearer of a Shield of Missile Attraction is behind total cover?

Do authors have to be politically correct in article-writing?

Cat is tipping over bed-side lamps during the night

How do I append a character to the end of every line in an excel cell?

Potential client has a problematic employee I can't work with

Why are the books in the Game of Thrones citadel library shelved spine inwards?

How to politely refuse in-office gym instructor for steroids and protein

What makes papers publishable in top-tier journals?

Eww, those bytes are gross

Why zero tolerance on nudity in space?

How do you catch Smeargle in Pokemon Go?

Globe trotting Grandpa. Where is he going next?

Is there a lava-breathing lizard creature (that could be worshipped by a cult) in 5e?

What is the wife of a henpecked husband called?

Why did the villain in the first Men in Black movie care about Earth's Cockroaches?

After checking in online, how do I know whether I need to go show my passport at airport check-in?

What is a DAG (Graph Theory)?

Why was Lupin comfortable with saying Voldemort's name?

Why would space fleets be aligned?

How can I play a serial killer in a party of good PCs?

Which communication protocol is used in AdLib sound card?

Short story where statues have their heads replaced by those of carved insect heads

Plausible reason for gold-digging ant

What is the difference between "...", '...', $'...', and $"..." quotes?



A curious equality of integrals involving the prime counting function?


How many primes does this sequence find?Tight bounds on the prime counting functionDirichlet prime counting function?closed form for integrals involving error functiona practical prime counting functionPrime counting functionRestricted equality involving prime numbersPrime counting function formulasProof for a prime number formula involving the prime counting functionProperty of Prime Counting FunctionApproximating the prime counting function













9












$begingroup$


This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    59 mins ago








  • 1




    $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    41 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    38 mins ago
















9












$begingroup$


This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    59 mins ago








  • 1




    $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    41 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    38 mins ago














9












9








9


5



$begingroup$


This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.










share|cite|improve this question











$endgroup$




This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.







integration definite-integrals prime-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 24 mins ago







Tito Piezas III

















asked 1 hour ago









Tito Piezas IIITito Piezas III

27.4k366174




27.4k366174












  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    59 mins ago








  • 1




    $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    41 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    38 mins ago


















  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    59 mins ago








  • 1




    $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    41 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    38 mins ago
















$begingroup$
Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
$endgroup$
– John Omielan
1 hour ago




$begingroup$
Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
$endgroup$
– John Omielan
1 hour ago












$begingroup$
@JohnOmielan: A typo. I meant all $n>0$. I will correct it.
$endgroup$
– Tito Piezas III
1 hour ago




$begingroup$
@JohnOmielan: A typo. I meant all $n>0$. I will correct it.
$endgroup$
– Tito Piezas III
1 hour ago












$begingroup$
I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
$endgroup$
– John Omielan
59 mins ago






$begingroup$
I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
$endgroup$
– John Omielan
59 mins ago






1




1




$begingroup$
I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
$endgroup$
– Claude Leibovici
41 mins ago






$begingroup$
I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
$endgroup$
– Claude Leibovici
41 mins ago














$begingroup$
@ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
$endgroup$
– Tito Piezas III
38 mins ago




$begingroup$
@ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
$endgroup$
– Tito Piezas III
38 mins ago










1 Answer
1






active

oldest

votes


















10












$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    26 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    16 mins ago










  • $begingroup$
    This really surprises me since I thought the equation will be eventually false...
    $endgroup$
    – Seewoo Lee
    11 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128367%2fa-curious-equality-of-integrals-involving-the-prime-counting-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









10












$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    26 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    16 mins ago










  • $begingroup$
    This really surprises me since I thought the equation will be eventually false...
    $endgroup$
    – Seewoo Lee
    11 mins ago
















10












$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    26 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    16 mins ago










  • $begingroup$
    This really surprises me since I thought the equation will be eventually false...
    $endgroup$
    – Seewoo Lee
    11 mins ago














10












10








10





$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$



The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 27 mins ago









Tito Piezas III

27.4k366174




27.4k366174










answered 39 mins ago









Greg MartinGreg Martin

35.5k23364




35.5k23364








  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    26 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    16 mins ago










  • $begingroup$
    This really surprises me since I thought the equation will be eventually false...
    $endgroup$
    – Seewoo Lee
    11 mins ago














  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    26 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    16 mins ago










  • $begingroup$
    This really surprises me since I thought the equation will be eventually false...
    $endgroup$
    – Seewoo Lee
    11 mins ago








1




1




$begingroup$
MSE never ceases to amaze me how fast some people can figure out the answer.
$endgroup$
– Tito Piezas III
26 mins ago




$begingroup$
MSE never ceases to amaze me how fast some people can figure out the answer.
$endgroup$
– Tito Piezas III
26 mins ago












$begingroup$
Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
$endgroup$
– Tito Piezas III
16 mins ago




$begingroup$
Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
$endgroup$
– Tito Piezas III
16 mins ago












$begingroup$
This really surprises me since I thought the equation will be eventually false...
$endgroup$
– Seewoo Lee
11 mins ago




$begingroup$
This really surprises me since I thought the equation will be eventually false...
$endgroup$
– Seewoo Lee
11 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128367%2fa-curious-equality-of-integrals-involving-the-prime-counting-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...

Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...