Using only 1s, make 29 with the minimum number of digitsMaking π from 1 2 3 4 5 6 7 8 9Express the number...
What evolutionary advantage do viruses have in host specificity?
Graph with overlapping labels
What would be the rarity of this magic item(s)?
How much mayhem could I cause as a sentient fish?
Can I make estimated tax payments instead of withholding from my paycheck?
Citing paywalled articles accessed via illegal web sharing
Why zero tolerance on nudity in space?
Odd 74HCT1G125 behaviour
What incentives do banks have to gather up loans into pools (backed by Ginnie Mae)and selling them?
What's a good word to describe a public place that looks like it wouldn't be rough?
Play Zip, Zap, Zop
What to look for when criticizing poetry?
How to play electric guitar and bass as a duet
Am I a Rude Number?
Is there any risk in sharing info about technologies and products we use with a supplier?
Use two 8s and two 3s to make the number 24
If I delete my router's history can my ISP still provide it to my parents?
How can I play a serial killer in a party of good PCs?
Move fast ...... Or you will lose
Convert exam marks to overall grade
using 'echo' & 'printf' in bash function calls
Is a new Boolean field better than a null reference when a value can be meaningfully absent?
Can we harness gravitational potential energy?
Absorbing damage with Planeswalker
Using only 1s, make 29 with the minimum number of digits
Making π from 1 2 3 4 5 6 7 8 9Express the number $2015$ using only the digit $2$ twiceHow many consecutive positive integers can you make using exactly four instances of the digit '4'?Make numbers 1 - 32 using the digits 2, 0, 1, 7Most consecutive positive integers using two 1sMake numbers 1-31 with 1,9,7,8Make numbers 1 - 30 using the digits 2, 0, 1, 8Make numbers 93 using the digits 2, 0, 1, 8Make numbers 33-100 using only digits 2,0,1,8Make numbers 1-30 using 2, 0, 1, 9
$begingroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
New contributor
$endgroup$
Operations permitted:
- Standard operations: +, −, ×, ÷
- Negation: −
- Exponentiation of two numbers: x^y
- Square root of a number: √
- Factorial: !
- Concatenation of the original digits: dd
mathematics calculation-puzzle formation-of-numbers
mathematics calculation-puzzle formation-of-numbers
New contributor
New contributor
New contributor
asked 1 hour ago
Allan CaoAllan Cao
1063
1063
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "559"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80050%2fusing-only-1s-make-29-with-the-minimum-number-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
add a comment |
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
add a comment |
$begingroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
$endgroup$
Here's a 7 digits solution:
7 digits: (11-1)x(1+1+1)-1
answered 45 mins ago
Dr XorileDr Xorile
12.9k22569
12.9k22569
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
add a comment |
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
That is the minimum I achieved by referencing the Single Digit Representations of Natural Numbers paper. Hopefully 6 is possible.
$endgroup$
– Allan Cao
35 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
Do you mean that allowing concatenations should reduce it from 7 to 6? Or are the constraints the same in the paper you cite as in the question above?
$endgroup$
– Dr Xorile
32 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
$begingroup$
The paper uses different rules.
$endgroup$
– Allan Cao
22 mins ago
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
add a comment |
$begingroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
$endgroup$
Lowest I managed so far is 9 digits:
(1 + 1 + 1 + 1)! + 1 + 1 + 1 + 1 + 1
11*(1 + 1 + 1) - (1 + 1 + 1 + 1)
Some other ways I came up with:
(1 + 1)^(1 + 1 + 1 + 1 + 1) - 1 - 1 - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)!/(1 + 1 + 1 + 1) - 1 (10 digits)
(1 + 1 + 1 + 1 + 1)^(1 + 1) + 1 + 1 + 1 + 1 (11 digits)
11*(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11 digits)
edited 47 mins ago
answered 55 mins ago
simonzacksimonzack
267110
267110
add a comment |
add a comment |
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Allan Cao is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80050%2fusing-only-1s-make-29-with-the-minimum-number-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown