Noise in Eigenvalues plot Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm...
How to achieve cat-like agility?
By what mechanism was the 2017 UK General Election called?
Any stored/leased 737s that could substitute for grounded MAXs?
How many time has Arya actually used Needle?
Fit odd number of triplets in a measure?
What was the last profitable war?
Flight departed from the gate 5 min before scheduled departure time. Refund options
Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)
The Nth Gryphon Number
Is the Mordenkainens' Sword spell underpowered?
What did Turing mean when saying that "machines cannot give rise to surprises" is due to a fallacy?
Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?
What are some likely causes to domain member PC losing contact to domain controller?
How does the body cool itself in a stillsuit?
Is it OK to use the testing sample to compare algorithms?
Is there a spell that can create a permanent fire?
The test team as an enemy of development? And how can this be avoided?
What is "Lambda" in Heston's original paper on stochastic volatility models?
How to resize main filesystem
Keep at all times, the minus sign above aligned with minus sign below
Random body shuffle every night—can we still function?
Why are current probes so expensive?
What is the proper term for etching or digging of wall to hide conduit of cables
Vertical ranges of Column Plots in 12
Noise in Eigenvalues plot
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Problem with plotting eigenvaluesHow to overlay ListPlot on a ContourPlot with correct range?Trying to find intersection of 3 functions graphicallySome glitch in the Plot: Two approaches for plotting give different resultsDEigenvalues with Robin B.C. sign problemHow can I add a custom color function and a custom mesh to a 3D parametric plot?How do I plot $y=8 sin(2 pi / 3)$?Plotting eigenvalues in one plot for three different parametersEigenvalues of a non-Hermitian complex periodic potentialHow to compute eigenvalues of a large symbolic matrix?
$begingroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
$endgroup$
add a comment |
$begingroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
$endgroup$
add a comment |
$begingroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
$endgroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
plotting eigenvalues
edited 3 hours ago
Michael E2
151k12203483
151k12203483
asked 3 hours ago
Hazoor ImranHazoor Imran
313
313
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195721%2fnoise-in-eigenvalues-plot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
answered 3 hours ago
Henrik SchumacherHenrik Schumacher
60.7k585171
60.7k585171
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
answered 3 hours ago
Michael E2Michael E2
151k12203483
151k12203483
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
add a comment |
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value
-0.5
on the right hand side to something bigger. For example ContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.$endgroup$
– Michael E2
2 hours ago
$begingroup$
@HazoorImran Yes, but set the value
-0.5
on the right hand side to something bigger. For example ContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.$endgroup$
– Michael E2
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
2 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195721%2fnoise-in-eigenvalues-plot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown