What is the probability that the nth card becomes the top card after shuffling a certain way?Probability of...
Walter Rudin's mathematical analysis: theorem 2.43. Why proof can't work under the perfect set is uncountable.
Derivative of an interpolated function
Non-Borel set in arbitrary metric space
Why is indicated airspeed rather than ground speed used during the takeoff roll?
Asserting that Atheism and Theism are both faith based positions
How do you say "Trust your struggle." in French?
Did I make a mistake by ccing email to boss to others?
How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?
Why would five hundred and five same as one?
I keep switching characters, how do I stop?
What (if any) is the reason to buy in small local stores?
Can you describe someone as luxurious? As in someone who likes luxurious things?
How to test the sharpness of a knife?
Relations between homogeneous polynomials
Why is implicit conversion not ambiguous for non-primitive types?
Is this Pascal's Matrix?
Reasons for having MCU pin-states default to pull-up/down out of reset
Why didn’t Eve recognize the little cockroach as a living organism?
Pre-Employment Background Check With Consent For Future Checks
Why is participating in the European Parliamentary elections used as a threat?
How do you justify more code being written by following clean code practices?
Connection Between Knot Theory and Number Theory
Why can't I get pgrep output right to variable on bash script?
How to get directions in deep space?
What is the probability that the nth card becomes the top card after shuffling a certain way?
Probability of drawing the top two cardsshuffle a deck of cards and cut it into three piles ,what probability that (at least) a court card will turn up on top of one of the piles?What is the probability that the first ace in a deck is the 30th card?The probability that a card is not chosen after a number of drawsProbability of drawing 3 cards in a 16 card deck where one of those 3 cards a duplicate in the deck?Probability of drawing certain card types in an opening handProbability that no five-card hands have each card with the same rank?What is the probability that at least 10 cards go by before the first jack?Probability of picking a card randomly vs always picking the first card?What is the probability that only one of the cards will have the matching suit?
$begingroup$
The following problem I can only seem to solve by simulation.
Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.
We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.
Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac{1}{7}$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.
But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac{7}{49}$ chance card 1 is on top, a $frac{6}{49}$ chance that card 2 is on top, etc.
I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?
probability combinatorics
$endgroup$
add a comment |
$begingroup$
The following problem I can only seem to solve by simulation.
Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.
We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.
Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac{1}{7}$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.
But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac{7}{49}$ chance card 1 is on top, a $frac{6}{49}$ chance that card 2 is on top, etc.
I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?
probability combinatorics
$endgroup$
add a comment |
$begingroup$
The following problem I can only seem to solve by simulation.
Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.
We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.
Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac{1}{7}$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.
But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac{7}{49}$ chance card 1 is on top, a $frac{6}{49}$ chance that card 2 is on top, etc.
I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?
probability combinatorics
$endgroup$
The following problem I can only seem to solve by simulation.
Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.
We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.
Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac{1}{7}$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.
But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac{7}{49}$ chance card 1 is on top, a $frac{6}{49}$ chance that card 2 is on top, etc.
I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?
probability combinatorics
probability combinatorics
asked 5 hours ago
HiddenBabelHiddenBabel
1547
1547
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.
You can solve this numerically by modelling it as a Markov chain with 52 states (positions).
Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.
For example, in Octave/Matlab
P = zeros(52,52);
for i=1:52
for k=23:29
P(i,mod(i-1+k,52)+1) = 1/7;
endfor
endfor
P(:,1) % probabilities after the first cut
(P^2)(:,1) % probabilities after the second cut
(P^3)(:,1) % probabilities after the third cut...
$endgroup$
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
add a comment |
$begingroup$
There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^{th}$ coordinate of $M^nx$.
$endgroup$
add a comment |
$begingroup$
One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.
Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin{0,pm1,pm2,pm3}$ with equal probability $1/7$, and any other number with probability zero.
We can perform further cuts.
Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in ${0,pm1,pm2,pm3}$ with probability one.
We have $S_0=0$, then
$S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,
$S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,
$S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,
$S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,
and so on. I would start the repartition of the process $(S_n)$ using this language...
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154874%2fwhat-is-the-probability-that-the-nth-card-becomes-the-top-card-after-shuffling-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.
You can solve this numerically by modelling it as a Markov chain with 52 states (positions).
Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.
For example, in Octave/Matlab
P = zeros(52,52);
for i=1:52
for k=23:29
P(i,mod(i-1+k,52)+1) = 1/7;
endfor
endfor
P(:,1) % probabilities after the first cut
(P^2)(:,1) % probabilities after the second cut
(P^3)(:,1) % probabilities after the third cut...
$endgroup$
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
add a comment |
$begingroup$
For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.
You can solve this numerically by modelling it as a Markov chain with 52 states (positions).
Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.
For example, in Octave/Matlab
P = zeros(52,52);
for i=1:52
for k=23:29
P(i,mod(i-1+k,52)+1) = 1/7;
endfor
endfor
P(:,1) % probabilities after the first cut
(P^2)(:,1) % probabilities after the second cut
(P^3)(:,1) % probabilities after the third cut...
$endgroup$
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
add a comment |
$begingroup$
For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.
You can solve this numerically by modelling it as a Markov chain with 52 states (positions).
Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.
For example, in Octave/Matlab
P = zeros(52,52);
for i=1:52
for k=23:29
P(i,mod(i-1+k,52)+1) = 1/7;
endfor
endfor
P(:,1) % probabilities after the first cut
(P^2)(:,1) % probabilities after the second cut
(P^3)(:,1) % probabilities after the third cut...
$endgroup$
For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.
You can solve this numerically by modelling it as a Markov chain with 52 states (positions).
Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.
For example, in Octave/Matlab
P = zeros(52,52);
for i=1:52
for k=23:29
P(i,mod(i-1+k,52)+1) = 1/7;
endfor
endfor
P(:,1) % probabilities after the first cut
(P^2)(:,1) % probabilities after the second cut
(P^3)(:,1) % probabilities after the third cut...
answered 3 hours ago
leonbloyleonbloy
41.7k647108
41.7k647108
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
add a comment |
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
$begingroup$
I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
$endgroup$
– HiddenBabel
3 hours ago
add a comment |
$begingroup$
There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^{th}$ coordinate of $M^nx$.
$endgroup$
add a comment |
$begingroup$
There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^{th}$ coordinate of $M^nx$.
$endgroup$
add a comment |
$begingroup$
There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^{th}$ coordinate of $M^nx$.
$endgroup$
There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^{th}$ coordinate of $M^nx$.
answered 3 hours ago
Mike EarnestMike Earnest
25.2k22151
25.2k22151
add a comment |
add a comment |
$begingroup$
One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.
Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin{0,pm1,pm2,pm3}$ with equal probability $1/7$, and any other number with probability zero.
We can perform further cuts.
Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in ${0,pm1,pm2,pm3}$ with probability one.
We have $S_0=0$, then
$S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,
$S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,
$S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,
$S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,
and so on. I would start the repartition of the process $(S_n)$ using this language...
$endgroup$
add a comment |
$begingroup$
One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.
Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin{0,pm1,pm2,pm3}$ with equal probability $1/7$, and any other number with probability zero.
We can perform further cuts.
Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in ${0,pm1,pm2,pm3}$ with probability one.
We have $S_0=0$, then
$S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,
$S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,
$S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,
$S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,
and so on. I would start the repartition of the process $(S_n)$ using this language...
$endgroup$
add a comment |
$begingroup$
One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.
Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin{0,pm1,pm2,pm3}$ with equal probability $1/7$, and any other number with probability zero.
We can perform further cuts.
Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in ${0,pm1,pm2,pm3}$ with probability one.
We have $S_0=0$, then
$S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,
$S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,
$S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,
$S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,
and so on. I would start the repartition of the process $(S_n)$ using this language...
$endgroup$
One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.
Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin{0,pm1,pm2,pm3}$ with equal probability $1/7$, and any other number with probability zero.
We can perform further cuts.
Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in ${0,pm1,pm2,pm3}$ with probability one.
We have $S_0=0$, then
$S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,
$S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,
$S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,
$S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,
and so on. I would start the repartition of the process $(S_n)$ using this language...
answered 5 hours ago
dan_fuleadan_fulea
6,7781312
6,7781312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154874%2fwhat-is-the-probability-that-the-nth-card-becomes-the-top-card-after-shuffling-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown