The probability of reaching the absorbing states from a particular transient state?Plotting absorbing state...

How vim overwrites readonly mode?

How do you funnel food off a cutting board?

Translation needed for 130 years old church document

What senses are available to a corpse subjected to a Speak with Dead spell?

What's the oldest plausible frozen specimen for a Jurassic Park style story-line?

Can we "borrow" our answers to populate our own websites?

Calculate the true diameter of stars from photographic plate

What is the difference between "...", '...', $'...', and $"..." quotes?

How do you voice extended chords?

Why is Agricola named as such?

Can the "Friends" spell be used without making the target hostile?

Am I correct in stating that the study of topology is purely theoretical?

Why did the villain in the first Men in Black movie care about Earth's Cockroaches?

Does it take energy to move something in a circle?

Citing paid articles from illegal web sharing

Could an Apollo mission be possible if Moon would be Earth like?

What happens when the wearer of a Shield of Missile Attraction is behind total cover?

Cat is tipping over bed-side lamps during the night

Is there a lava-breathing lizard creature (that could be worshipped by a cult) in 5e?

Eww, those bytes are gross

Does Skippy chunky peanut butter contain trans fat?

What is a good reason for every spaceship to carry a weapon on board?

How do I prevent a homebrew Grappling Hook feature from trivializing Tomb of Annihilation?

What game did these black and yellow dice come from?



The probability of reaching the absorbing states from a particular transient state?


Plotting absorbing state probabilities from state 1Defining a function of a distributionNicely illustrating the evolution and end-state of a discrete-time Markov chainHow to obtain the number of Markov Chain transitions in a simulation?Arranging “ranked” nodes of a graph symmetricallyState “i” goes to state “j”: list accessible states in a Markov-chainPart specification error with InterpolatingFunction when generating a Markov Modulated Poisson ProcessUsing Mathematica to calculate expected time to absorptionHidden Markov Model: emissions probabilities dependent on observable parameterEstimate process parameters of geometric Brownian motion with a two-state Markov chainPlotting absorbing state probabilities from state 1













4












$begingroup$


Can I use the data available from MarkovProcessProperties to compute the probability of reaching each of the absorbing states from a particular transient state?



In an earlier post, kglr showed a solution involving the probabilities from State 1. Can that solution be amended easily to compute the probabilities from any of the transient states?










share|improve this question











$endgroup$












  • $begingroup$
    Do you mean something like this? StationaryDistribution[DiscreteMarkovProcess[{1,0,0},{{0,1/2,1/2},{0,1,0},{0,0,1}}]]
    $endgroup$
    – Sjoerd Smit
    1 hour ago










  • $begingroup$
    I am looking for a solution like the one shown by kglr in the link, but which is more dynamic because it offers the possibility of specifying the particular transient state to be examined.
    $endgroup$
    – user120911
    1 hour ago
















4












$begingroup$


Can I use the data available from MarkovProcessProperties to compute the probability of reaching each of the absorbing states from a particular transient state?



In an earlier post, kglr showed a solution involving the probabilities from State 1. Can that solution be amended easily to compute the probabilities from any of the transient states?










share|improve this question











$endgroup$












  • $begingroup$
    Do you mean something like this? StationaryDistribution[DiscreteMarkovProcess[{1,0,0},{{0,1/2,1/2},{0,1,0},{0,0,1}}]]
    $endgroup$
    – Sjoerd Smit
    1 hour ago










  • $begingroup$
    I am looking for a solution like the one shown by kglr in the link, but which is more dynamic because it offers the possibility of specifying the particular transient state to be examined.
    $endgroup$
    – user120911
    1 hour ago














4












4








4





$begingroup$


Can I use the data available from MarkovProcessProperties to compute the probability of reaching each of the absorbing states from a particular transient state?



In an earlier post, kglr showed a solution involving the probabilities from State 1. Can that solution be amended easily to compute the probabilities from any of the transient states?










share|improve this question











$endgroup$




Can I use the data available from MarkovProcessProperties to compute the probability of reaching each of the absorbing states from a particular transient state?



In an earlier post, kglr showed a solution involving the probabilities from State 1. Can that solution be amended easily to compute the probabilities from any of the transient states?







markov-chains markov-process






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago







user120911

















asked 2 hours ago









user120911user120911

67228




67228












  • $begingroup$
    Do you mean something like this? StationaryDistribution[DiscreteMarkovProcess[{1,0,0},{{0,1/2,1/2},{0,1,0},{0,0,1}}]]
    $endgroup$
    – Sjoerd Smit
    1 hour ago










  • $begingroup$
    I am looking for a solution like the one shown by kglr in the link, but which is more dynamic because it offers the possibility of specifying the particular transient state to be examined.
    $endgroup$
    – user120911
    1 hour ago


















  • $begingroup$
    Do you mean something like this? StationaryDistribution[DiscreteMarkovProcess[{1,0,0},{{0,1/2,1/2},{0,1,0},{0,0,1}}]]
    $endgroup$
    – Sjoerd Smit
    1 hour ago










  • $begingroup$
    I am looking for a solution like the one shown by kglr in the link, but which is more dynamic because it offers the possibility of specifying the particular transient state to be examined.
    $endgroup$
    – user120911
    1 hour ago
















$begingroup$
Do you mean something like this? StationaryDistribution[DiscreteMarkovProcess[{1,0,0},{{0,1/2,1/2},{0,1,0},{0,0,1}}]]
$endgroup$
– Sjoerd Smit
1 hour ago




$begingroup$
Do you mean something like this? StationaryDistribution[DiscreteMarkovProcess[{1,0,0},{{0,1/2,1/2},{0,1,0},{0,0,1}}]]
$endgroup$
– Sjoerd Smit
1 hour ago












$begingroup$
I am looking for a solution like the one shown by kglr in the link, but which is more dynamic because it offers the possibility of specifying the particular transient state to be examined.
$endgroup$
– user120911
1 hour ago




$begingroup$
I am looking for a solution like the one shown by kglr in the link, but which is more dynamic because it offers the possibility of specifying the particular transient state to be examined.
$endgroup$
– user120911
1 hour ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

proc = DiscreteMarkovProcess[1, {{0., 0.5, 0., 0., 0.5, 0., 0., 0., 0., 0.}, 
{0., 0., 0.5, 0., 0., 0.5, 0., 0., 0., 0.},
{0., 0., 0., 0.5, 0., 0., 0.5, 0., 0., 0.},
{0., 0., 0., 1., 0., 0., 0., 0., 0., 0.},
{0., 0., 0., 0., 0., 0.5, 0., 0.5, 0., 0.},
{0., 0., 0., 0., 0., 0., 0.5, 0., 0.5, 0.},
{0., 0., 0., 0., 0., 0., 1., 0., 0., 0.},
{0., 0., 0., 0., 0., 0., 0., 0., 0.5, 0.5},
{0., 0., 0., 0., 0., 0., 0., 0., 1., 0.},
{0., 0., 0., 0., 0., 0., 0., 0., 0., 1.}}];

Graph[proc]


enter image description here



{tr, ab, ltm} = MarkovProcessProperties[proc, #] & /@ 
{ "TransientClasses", "AbsorbingClasses", "LimitTransitionMatrix"};

TeXForm @ TableForm[ltm[[Flatten@tr, Flatten@ab]],
TableHeadings -> {Flatten@tr, Flatten@ab}]



$begin{array}{ccccc}
& 4 & 7 & 9 & 10 \
3 & 0.5 & 0.5 & 0. & 0. \
6 & 0. & 0.5 & 0.5 & 0. \
2 & 0.25 & 0.5 & 0.25 & 0. \
8 & 0. & 0. & 0.5 & 0.5 \
5 & 0. & 0.25 & 0.5 & 0.25 \
1 & 0.125 & 0.375 & 0.375 & 0.125 \
end{array}$







share|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "387"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192241%2fthe-probability-of-reaching-the-absorbing-states-from-a-particular-transient-sta%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    proc = DiscreteMarkovProcess[1, {{0., 0.5, 0., 0., 0.5, 0., 0., 0., 0., 0.}, 
    {0., 0., 0.5, 0., 0., 0.5, 0., 0., 0., 0.},
    {0., 0., 0., 0.5, 0., 0., 0.5, 0., 0., 0.},
    {0., 0., 0., 1., 0., 0., 0., 0., 0., 0.},
    {0., 0., 0., 0., 0., 0.5, 0., 0.5, 0., 0.},
    {0., 0., 0., 0., 0., 0., 0.5, 0., 0.5, 0.},
    {0., 0., 0., 0., 0., 0., 1., 0., 0., 0.},
    {0., 0., 0., 0., 0., 0., 0., 0., 0.5, 0.5},
    {0., 0., 0., 0., 0., 0., 0., 0., 1., 0.},
    {0., 0., 0., 0., 0., 0., 0., 0., 0., 1.}}];

    Graph[proc]


    enter image description here



    {tr, ab, ltm} = MarkovProcessProperties[proc, #] & /@ 
    { "TransientClasses", "AbsorbingClasses", "LimitTransitionMatrix"};

    TeXForm @ TableForm[ltm[[Flatten@tr, Flatten@ab]],
    TableHeadings -> {Flatten@tr, Flatten@ab}]



    $begin{array}{ccccc}
    & 4 & 7 & 9 & 10 \
    3 & 0.5 & 0.5 & 0. & 0. \
    6 & 0. & 0.5 & 0.5 & 0. \
    2 & 0.25 & 0.5 & 0.25 & 0. \
    8 & 0. & 0. & 0.5 & 0.5 \
    5 & 0. & 0.25 & 0.5 & 0.25 \
    1 & 0.125 & 0.375 & 0.375 & 0.125 \
    end{array}$







    share|improve this answer











    $endgroup$


















      4












      $begingroup$

      proc = DiscreteMarkovProcess[1, {{0., 0.5, 0., 0., 0.5, 0., 0., 0., 0., 0.}, 
      {0., 0., 0.5, 0., 0., 0.5, 0., 0., 0., 0.},
      {0., 0., 0., 0.5, 0., 0., 0.5, 0., 0., 0.},
      {0., 0., 0., 1., 0., 0., 0., 0., 0., 0.},
      {0., 0., 0., 0., 0., 0.5, 0., 0.5, 0., 0.},
      {0., 0., 0., 0., 0., 0., 0.5, 0., 0.5, 0.},
      {0., 0., 0., 0., 0., 0., 1., 0., 0., 0.},
      {0., 0., 0., 0., 0., 0., 0., 0., 0.5, 0.5},
      {0., 0., 0., 0., 0., 0., 0., 0., 1., 0.},
      {0., 0., 0., 0., 0., 0., 0., 0., 0., 1.}}];

      Graph[proc]


      enter image description here



      {tr, ab, ltm} = MarkovProcessProperties[proc, #] & /@ 
      { "TransientClasses", "AbsorbingClasses", "LimitTransitionMatrix"};

      TeXForm @ TableForm[ltm[[Flatten@tr, Flatten@ab]],
      TableHeadings -> {Flatten@tr, Flatten@ab}]



      $begin{array}{ccccc}
      & 4 & 7 & 9 & 10 \
      3 & 0.5 & 0.5 & 0. & 0. \
      6 & 0. & 0.5 & 0.5 & 0. \
      2 & 0.25 & 0.5 & 0.25 & 0. \
      8 & 0. & 0. & 0.5 & 0.5 \
      5 & 0. & 0.25 & 0.5 & 0.25 \
      1 & 0.125 & 0.375 & 0.375 & 0.125 \
      end{array}$







      share|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        proc = DiscreteMarkovProcess[1, {{0., 0.5, 0., 0., 0.5, 0., 0., 0., 0., 0.}, 
        {0., 0., 0.5, 0., 0., 0.5, 0., 0., 0., 0.},
        {0., 0., 0., 0.5, 0., 0., 0.5, 0., 0., 0.},
        {0., 0., 0., 1., 0., 0., 0., 0., 0., 0.},
        {0., 0., 0., 0., 0., 0.5, 0., 0.5, 0., 0.},
        {0., 0., 0., 0., 0., 0., 0.5, 0., 0.5, 0.},
        {0., 0., 0., 0., 0., 0., 1., 0., 0., 0.},
        {0., 0., 0., 0., 0., 0., 0., 0., 0.5, 0.5},
        {0., 0., 0., 0., 0., 0., 0., 0., 1., 0.},
        {0., 0., 0., 0., 0., 0., 0., 0., 0., 1.}}];

        Graph[proc]


        enter image description here



        {tr, ab, ltm} = MarkovProcessProperties[proc, #] & /@ 
        { "TransientClasses", "AbsorbingClasses", "LimitTransitionMatrix"};

        TeXForm @ TableForm[ltm[[Flatten@tr, Flatten@ab]],
        TableHeadings -> {Flatten@tr, Flatten@ab}]



        $begin{array}{ccccc}
        & 4 & 7 & 9 & 10 \
        3 & 0.5 & 0.5 & 0. & 0. \
        6 & 0. & 0.5 & 0.5 & 0. \
        2 & 0.25 & 0.5 & 0.25 & 0. \
        8 & 0. & 0. & 0.5 & 0.5 \
        5 & 0. & 0.25 & 0.5 & 0.25 \
        1 & 0.125 & 0.375 & 0.375 & 0.125 \
        end{array}$







        share|improve this answer











        $endgroup$



        proc = DiscreteMarkovProcess[1, {{0., 0.5, 0., 0., 0.5, 0., 0., 0., 0., 0.}, 
        {0., 0., 0.5, 0., 0., 0.5, 0., 0., 0., 0.},
        {0., 0., 0., 0.5, 0., 0., 0.5, 0., 0., 0.},
        {0., 0., 0., 1., 0., 0., 0., 0., 0., 0.},
        {0., 0., 0., 0., 0., 0.5, 0., 0.5, 0., 0.},
        {0., 0., 0., 0., 0., 0., 0.5, 0., 0.5, 0.},
        {0., 0., 0., 0., 0., 0., 1., 0., 0., 0.},
        {0., 0., 0., 0., 0., 0., 0., 0., 0.5, 0.5},
        {0., 0., 0., 0., 0., 0., 0., 0., 1., 0.},
        {0., 0., 0., 0., 0., 0., 0., 0., 0., 1.}}];

        Graph[proc]


        enter image description here



        {tr, ab, ltm} = MarkovProcessProperties[proc, #] & /@ 
        { "TransientClasses", "AbsorbingClasses", "LimitTransitionMatrix"};

        TeXForm @ TableForm[ltm[[Flatten@tr, Flatten@ab]],
        TableHeadings -> {Flatten@tr, Flatten@ab}]



        $begin{array}{ccccc}
        & 4 & 7 & 9 & 10 \
        3 & 0.5 & 0.5 & 0. & 0. \
        6 & 0. & 0.5 & 0.5 & 0. \
        2 & 0.25 & 0.5 & 0.25 & 0. \
        8 & 0. & 0. & 0.5 & 0.5 \
        5 & 0. & 0.25 & 0.5 & 0.25 \
        1 & 0.125 & 0.375 & 0.375 & 0.125 \
        end{array}$








        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 48 mins ago

























        answered 1 hour ago









        kglrkglr

        186k10202421




        186k10202421






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192241%2fthe-probability-of-reaching-the-absorbing-states-from-a-particular-transient-sta%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

            Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

            Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...