Question about integral of an odd functionHow can I find the integral of this function using trig...
Why avoid shared user accounts?
How much mayhem could I cause as a sentient fish?
Why was Lupin comfortable with saying Voldemort's name?
Salsa20 Implementation: Sum of 2 Words with Carries Suppressed
Square Root Distance from Integers
Alien invasion to probe us, why?
What makes papers publishable in top-tier journals?
How would an AI self awareness kill switch work?
Strange "DuckDuckGo dork" takes me to random website
Does diversity provide anything that meritocracy does not?
Which communication protocol is used in AdLib sound card?
Why publish a research paper when a blog post or a lecture slide can have more citation count than a journal paper?
Why are all my replica super soldiers young adults or old teenagers?
How to not let the Identify spell spoil everything?
Constexpr if with a non-bool condition
Identify KNO3 and KH2PO4 at home
Am I a Rude Number?
Is there any risk in sharing info about technologies and products we use with a supplier?
What to look for when criticizing poetry?
Would tunnel walls be stronger if built using cut granite block walls reinforced with carbon based cords?
Move fast ...... Or you will lose
How to make ice magic work from a scientific point of view?
A curious equality of integrals involving the prime counting function?
Do authors have to be politically correct in article-writing?
Question about integral of an odd function
How can I find the integral of this function using trig substitution?Why does $sin{alpha}cdot isin{alpha x}$ disappear from this integral?Using Polar Coordinates to Calculate Double IntegralQuestion concerning the domain of polar coordinate.Evaluate $int_0^{infty}frac{e^{-x}-e^{-2x}}{x}dx$ using a double integralQuestion about the limits of definite integralsQuestion about a substitution in an integralDoubt about an improper multiple integralIntegrate $int_0^1 sin^{-1}{frac{x^2}{1+x^2}}dx$Studying the convergence of the integral $int_0^pi frac{ln(sin(x))}{x}dx$
$begingroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
$endgroup$
add a comment |
$begingroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
$endgroup$
add a comment |
$begingroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
$endgroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
calculus
asked 4 hours ago
manifoldedmanifolded
3487
3487
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128566%2fquestion-about-integral-of-an-odd-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
add a comment |
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
add a comment |
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
answered 4 hours ago
Kavi Rama MurthyKavi Rama Murthy
63.1k42362
63.1k42362
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
add a comment |
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
1
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
4 hours ago
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
answered 4 hours ago
s0ulr3aper07s0ulr3aper07
541111
541111
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128566%2fquestion-about-integral-of-an-odd-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown