Fekete polynomial References External links Navigation menuZeros of Fekete polynomials


PolynomialsZeta and L-functions


mathematicspolynomialLegendre symbolDirichlet L-functionsPeter Gustav Lejeune DirichletMichael FeketeL-functionnumber theorySiegel zero






Roots of the Fekete polynomial for p = 43


In mathematics, a Fekete polynomial is a polynomial


fp(t):=∑a=0p−1(ap)ta{displaystyle f_{p}(t):=sum _{a=0}^{p-1}left({frac {a}{p}}right)t^{a},}

where (⋅p){displaystyle left({frac {cdot }{p}}right),} is the Legendre symbol modulo some integer p > 1.


These polynomials were known in nineteenth-century studies of Dirichlet L-functions, and indeed to Peter Gustav Lejeune Dirichlet himself. They have acquired the name of Michael Fekete, who observed that the absence of real zeroes t of the Fekete polynomial with 0 < t < 1 implies an absence of the same kind for the L-function


L(s,xp).{displaystyle Lleft(s,{dfrac {x}{p}}right).,}

This is of considerable potential interest in number theory, in connection with the hypothetical Siegel zero near s = 1. While numerical results for small cases had indicated that there were few such real zeroes, further analysis reveals that this may indeed be a 'small number' effect.



References



  • Peter Borwein: Computational excursions in analysis and number theory. Springer, 2002, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-387-95444-9, Chap.5.


External links



  • Brian Conrey, Andrew Granville, Bjorn Poonen and Kannan Soundararajan, Zeros of Fekete polynomials, arXiv e-print math.NT/9906214, June 16, 1999.



Popular posts from this blog

Fibocom L850-GL installation on Ubuntu 18.04 The Next CEO of Stack OverflowDriver support for...

sdkmanager is notinstalledUninstall Android Studio completelyHow can KVM be located by Android Studio on...

Hasan Arfa Contents Early life The Pahlavis References Sources Further reading Navigation menu"ARFAʿ,...