Lauric acid Contents Occurrence Properties References Further reading External links Navigation...

ButyricValericCaproicEnanthicCaprylicPelargonicCapricUndecylicLauricTridecylicMyristicPentadecanoicPalmiticMargaricStearicNonadecylicArachidicHeneicosylicBehenicTricosylicLignocericPentacosylicCeroticHeptacosylicMontanicNonacosylicMelissicHentriacontylicLacceroicPsyllicGeddicCeroplasticHexatriacontylicHeptatriacontanoicOctatriacontanoicNonatriacontanoicTetracontanoicMyristoleicPalmitovaccenicα-Eleostearicβ-EleostearicPunicic7,10,13-Octadecatrienoic9,12,15-Eicosatrienoicβ-EicosatetraenoicPalmitoleicVaccenicRumenicPaullinic7,10,13-EicosatrienoicSapienic4-HexadecenoicPetroselinic8-Eicosenoic


Fatty acidsNutritionPalm oilLauratesAlkanoic acids


saturatedfatty acidmedium-chain fatty acidssaltsesterstriglyceridescoconut milkcoconut oillaurel oilpalm kernel oilpalm oilbreast milkportal veinfatty acidssoapscosmeticssodium hydroxidesodium lauratesoapsaponificationmolar massfreezing-point depressioncryoscopic constantacnecholesterolhigh-density lipoprotein (HDL)LDLcardiovascular disease













































































































































































































Lauric acid

Skeletal formula of lauric acid

Lauric-acid-3D-balls.png
Names

IUPAC name
Dodecanoic acid

Other names

n-Dodecanoic acid, Dodecylic acid, Dodecoic acid,
Laurostearic acid, Vulvic acid, 1-Undecanecarboxylic acid, Duodecylic acid, C12:0 (Lipid numbers)

Identifiers

CAS Number



  • 143-07-7 ☑Y


3D model (JSmol)


  • Interactive image


ChEBI


  • CHEBI:30805 ☒N


ChEMBL


  • ChEMBL108766 ☒N


ChemSpider


  • 3756 ☒N


ECHA InfoCard

100.005.075

EC Number
205-582-1

IUPHAR/BPS


  • 5534


KEGG


  • D10714 ☒N



PubChem CID


  • 3893





Properties

Chemical formula


C12H24O2

Molar mass

7002200322000000000♠200.322 g·mol−1
Appearance
White powder

Odor
Slight odor of bay oil

Density
1.007 g/cm3 (24 °C)[1]
0.8744 g/cm3 (41.5 °C)[2]
0.8679 g/cm3 (50 °C)[3]

Melting point
43.8 °C (110.8 °F; 316.9 K)[3]

Boiling point
297.9 °C (568.2 °F; 571.0 K)
282.5 °C (540.5 °F; 555.6 K)
at 512 mmHg[1]
225.1 °C (437.2 °F; 498.2 K)
at 100 mmHg[3][4]

Solubility in water

37 mg/L (0 °C)
55 mg/L (20 °C)
63 mg/L (30 °C)
72 mg/L (45 °C)
83 mg/L (100 °C)[5]

Solubility
Soluble in alcohols, (C2H5)2O, phenyls, haloalkanes, acetates[5]

Solubility in methanol
12.7 g/100 g (0 °C)
120 g/100 g (20 °C)
2250 g/100 g (40 °C)[5]

Solubility in acetone
8.95 g/100 g (0 °C)
60.5 g/100 g (20 °C)
1590 g/100 g (40 °C)[5]

Solubility in ethyl acetate
9.4 g/100 g (0 °C)
52 g/100 g (20°C)
1250 g/100 g (40°C)[5]

Solubility in toluene
15.3 g/100 g (0 °C)
97 g/100 g (20°C)
1410 g/100 g (40°C)[5]

log P
4.6[6]

Vapor pressure
2.13·10−6 kPa (25 °C)[6]
0.42 kPa (150 °C)[4]
6.67 kPa (210 °C)[7]

Acidity (pKa)
5.3 (20 °C)[6]

Thermal conductivity
0.442 W/m·K (solid)[2]
0.1921 W/m·K (72.5 °C)
0.1748 W/m·K (106 °C)[1]


Refractive index (nD)

1.423 (70 °C)[1]
1.4183 (82 °C)[3]

Viscosity
6.88 cP (50 °C)
5.37 cP (60 °C)[2]
Structure

Crystal structure


Monoclinic (α-form)[8]
Triclinic, aP228 (γ-form)[9]

Space group

P21/a, No. 14 (α-form)[8]
P1, No. 2 (γ-form)[9]

Point group

2/m (α-form)[8]
1 (γ-form)[9]

Lattice constant



a = 9.524 Å, b = 4.965 Å, c = 35.39 Å (α-form)[8]

α = 90°, β = 129.22°, γ = 90°

Thermochemistry


Heat capacity (C)

404.28 J/mol·K[4]


Std enthalpy of
formation fHo298)

−775.6 kJ/mol[6]


Std enthalpy of
combustion cHo298)

7377 kJ/mol
7425.8 kJ/mol (292 K)[4]
Hazards

GHS pictograms

The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

GHS signal word
Danger

GHS hazard statements


H412[7]

GHS precautionary statements


P273[7]

NFPA 704



Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil
Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine
Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium
Special hazards (white): no code
NFPA 704 four-colored diamond


1


1


1



Flash point
> 113 °C (235 °F; 386 K)[7]
Related compounds

Related compounds


Glyceryl laurate
Related compounds

Related compounds


Undecanoic acid, Tridecanoic acid

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☒N verify (what is ☑Y☒N ?)

Infobox references



Lauric acid or systematically, dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids, is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates.




Contents






  • 1 Occurrence


    • 1.1 In various plants




  • 2 Properties


    • 2.1 Laboratory use


    • 2.2 Potential medicinal properties




  • 3 References


  • 4 Further reading


  • 5 External links





Occurrence




Laurel oil contains lauric acid.


Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2% of total fat), cow's milk (2.9%), and goat's milk (3.1%).[10]



In various plants



  • The palm tree Attalea speciosa, a species popularly known in Brazil as babassu - 50% in babassu oil


  • Attalea cohune, the cohune palm (also rain tree, American oil palm, corozo palm or manaca palm) - 46.5% in cohune oil


  • Astrocaryum murumuru (Arecaceae) a palm native to the Amazon - 47.5% in "murumuru butter"


  • Coconut oil 49%


  • Pycnanthus kombo (African nutmeg)


  • Virola surinamensis (wild nutmeg) 7.8–11.5%


  • Peach palm seed 10.4%


  • Betel nut 9%


  • Date palm seed 0.56–5.4%


  • Durio graveolens (a species of durian) 1.31%.[12]


  • Macadamia nut 0.072–1.1%


  • Plum 0.35–0.38%


  • Watermelon seed 0.33%


  • Citrullus lanatus (egusi melon)


  • Pumpkin flower 205 ppm, pumpkin seed 472 ppm



Properties


Although 95% of medium-chain triglycerides are absorbed through the portal vein, only 25-30% of lauric acid is absorbed through it.[13]


Like many other fatty acids, lauric acid is inexpensive, has a long shelf-life, is nontoxic, and is safe to handle. It is used mainly for the production of soaps and cosmetics. For these purposes, lauric acid is reacted with sodium hydroxide to give sodium laurate, which is a soap. Most commonly, sodium laurate is obtained by saponification of various oils, such as coconut oil. These precursors give mixtures of sodium laurate and other soaps.[11]



Laboratory use


In the laboratory, lauric acid may be used to investigate the molar mass of an unknown substance via the freezing-point depression. The choice of lauric acid is convenient because the melting point of the pure compound is relatively high (43.8°C). Its cryoscopic constant is 3.9°C·kg/mol. By melting lauric acid with the unknown substance, allowing it to cool, and recording the temperature at which the mixture freezes, the molar mass of the unknown compound may be determined.[14]



Potential medicinal properties


In vitro experiments have suggested that some fatty acids including lauric acid could be a useful component in a treatment for acne, but no clinical trials have yet been conducted to evaluate this potential benefit in humans.[15][16]


Lauric acid increases total serum cholesterol more than many other fatty acids, but most of the increase is attributable to an increase in high-density lipoprotein (HDL) (the "good" blood cholesterol). As a result, lauric acid has been characterized as having "a more favorable effect on total HDL cholesterol than any other fatty acid [examined], either saturated or unsaturated".[17] In general, a lower total/HDL serum cholesterol ratio correlates with a decrease in atherosclerotic risk.[18] Nonetheless, an extensive meta-analysis on foods affecting the total LDL /serum cholesterol ratio found in 2003 that the net effects of lauric acid on coronary artery disease outcomes remained uncertain.[19] A 2016 review of coconut oil (which is nearly half lauric acid) was similarly inconclusive about the effects on cardiovascular disease risk.[13]



References





  1. ^ abcd G., Chuah T.; D., Rozanna; A., Salmiah; Y., Thomas Choong S.; M., Sa'ari (2006). "Fatty acids used as phase change materials (PCMs) for thermal energy storage in building material applications" (PDF). University Putra Malaysia. Archived from the original (PDF) on 2014-11-03. Retrieved 2014-06-22..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ abc Mezaki, Reiji; Mochizuki, Masafumi; Ogawa, Kohei (2000). Engineering data on mixing (1st ed.). Elsevier Science B.V. p. 278. ISBN 0-444-82802-8.


  3. ^ abcd Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0.


  4. ^ abcd Dodecanoic acid in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD), http://webbook.nist.gov (retrieved 2014-06-14)


  5. ^ abcdef Seidell, Atherton; Linke, William F. (1952). Solubilities of inorganic and organic compounds (3rd ed.). New York: D. Van Nostrand Company. pp. 742–743.


  6. ^ abcd CID 3893 from PubChem


  7. ^ abcd Sigma-Aldrich Co., Lauric acid. Retrieved on 2014-06-14.


  8. ^ abcd Vand, V.; Morley, W. M.; Lomer, T. R. (1951). "The crystal structure of lauric acid". Acta Crystallographica. 4 (4): 324–329. doi:10.1107/S0365110X51001069.


  9. ^ abc Sydow, Erik von (1956). "On the structure of the crystal form A of lauric acid" (PDF). actachemscand.org. Acta Chemica Scandinavica. Retrieved 2014-06-14.


  10. ^ ab Beare-Rogers, J.; Dieffenbacher, A.; Holm, J.V. (2001). "Lexicon of lipid nutrition (IUPAC Technical Report)". Pure and Applied Chemistry. 73 (4): 685–744. doi:10.1351/pac200173040685.


  11. ^ ab David J. Anneken, Sabine Both, Ralf Christoph, Georg Fieg, Udo Steinberner, Alfred Westfechtel "Fatty Acids" in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a10_245.pub2


  12. ^ Nasaruddin, Mohd hanif; Noor, Noor Qhairul Izzreen Mohd; Mamat, Hasmadi (2013). "Komposisi Proksimat dan Komponen Asid Lemak Durian Kuning (Durio graveolens) Sabah" [Proximate and Fatty Acid Composition of Sabah Yellow Durian (Durio graveolens)] (PDF). Sains Malaysiana (in Malay). 42 (9): 1283–1288. ISSN 0126-6039. OCLC 857479186. Retrieved 28 November 2017.


  13. ^ ab Eyres L, Eyres MF, Chisholm A, Brown RC (2016). "Coconut oil consumption and cardiovascular risk factors in humans". Nutrition Reviews. 74 (4): 267–280. doi:10.1093/nutrit/nuw002. PMC 4892314. PMID 26946252.


  14. ^ "Using Freezing Point Depression to find Molecular Weight" (PDF). University of California, Irvine. 2010-04-12. Archived from the original (PDF) on 2016-05-23.


  15. ^ Nakatsuji, T; Kao, MC; Fang, JY; Zouboulis, CC; Zhang, L; Gallo, RL; Huang, CM (2009). "Antimicrobial Property of Lauric Acid Against Propionibacterium acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris". The Journal of Investigative Dermatology. 129 (10): 2480–8. doi:10.1038/jid.2009.93. PMC 2772209. PMID 19387482.


  16. ^ Yang, D; Pornpattananangkul, D; Nakatsuji, T; Chan, M; Carson, D; Huang, CM; Zhang, L (2009). "The Antimicrobial Activity of Liposomal Lauric Acids Against Propionibacterium acnes". Biomaterials. 30 (30): 6035–40. doi:10.1016/j.biomaterials.2009.07.033. PMC 2735618. PMID 19665786.


  17. ^ Mensink RP, Zock PL, Kester AD, Katan MB (May 2003). "Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials". American Journal of Clinical Nutrition. 77 (5): 1146–1155. ISSN 0002-9165. PMID 12716665.


  18. ^ Thijssen, M.A. and R.P. Mensink. (2005). Fatty Acids and Atherosclerotic Risk. In Arnold von Eckardstein (Ed.) Atherosclerosis: Diet and Drugs. Springer. pp. 171–172.
    ISBN 978-3-540-22569-0.



  19. ^ Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials




Further reading



  • Berner, Louise A. (1993). Defining the Role of Milkfat in Balanced Diets. In John E. Kinsella (Ed.) Advances in Food and Nutrition Research – Volume 37. Academic Press. pp. 159–166.
    ISBN 978-0-12-016437-0.

  • Kabara, Jon J. (1978). The Pharmacological Effect of Lipids. Champaign IL: American Oil Chemist's Society.
    ISBN 9991817697.

  • Kabara, Jon J. (2008). Fats Are Good for You and Other Secrets – How Saturated Fat and Cholesterol Actually Benefit the Body. North Atlantic Books.
    ISBN 1-55643-690-4.



External links






  • Lauric acid MS Spectrum










Popular posts from this blog

Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...

Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...