Bloch's formula References Navigation menuexpanding ite


Algebraic K-theoryAlgebraic geometryTheorems in algebraic topologyAlgebraic geometry stubs


algebraic K-theorymathematicsSpencer BlochChow groupfieldPicard groupmixed characteristic




In algebraic K-theory, a branch of mathematics, Bloch's formula, introduced by Spencer Bloch for K2{displaystyle K_{2}}, states that the Chow group of a smooth variety X over a field is isomorphic to the cohomology of X with coefficients in the K-theory of the structure sheaf OX{displaystyle {mathcal {O}}_{X}}; that is,


CHq⁡(X)=Hq⁡(X,Kq(OX)){displaystyle operatorname {CH} ^{q}(X)=operatorname {H} ^{q}(X,K_{q}({mathcal {O}}_{X}))}

where the right-hand side is the sheaf cohomology; Kq(OX){displaystyle K_{q}({mathcal {O}}_{X})} is the sheaf associated to the presheaf U↦Kq(U){displaystyle Umapsto K_{q}(U)}, U Zariski open subsets of X. The general case is due to Quillen.[1] For q = 1, one recovers Pic⁡(X)=H1(X,OX∗){displaystyle operatorname {Pic} (X)=H^{1}(X,{mathcal {O}}_{X}^{*})}. (see also Picard group.)


The formula for the mixed characteristic is still open.



References





  1. ^ For a sketch of the proof, besides the original paper, see http://www-bcf.usc.edu/~ericmf/lectures/zurich/zlec5.pdf




  • Daniel Quillen: Higher algebraic K-theory: I. In: H. Bass (ed.): Higher K-Theories. Lecture Notes in Mathematics, vol. 341. Springer-Verlag, Berlin 1973. .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 3-540-06434-6









Popular posts from this blog

Fibocom L850-GL installation on Ubuntu 18.04 The Next CEO of Stack OverflowDriver support for...

sdkmanager is notinstalledUninstall Android Studio completelyHow can KVM be located by Android Studio on...

Hasan Arfa Contents Early life The Pahlavis References Sources Further reading Navigation menu"ARFAʿ,...