Bloch's formula References Navigation menuexpanding ite
Algebraic K-theoryAlgebraic geometryTheorems in algebraic topologyAlgebraic geometry stubs
algebraic K-theorymathematicsSpencer BlochChow groupfieldPicard groupmixed characteristic
In algebraic K-theory, a branch of mathematics, Bloch's formula, introduced by Spencer Bloch for K2{displaystyle K_{2}}, states that the Chow group of a smooth variety X over a field is isomorphic to the cohomology of X with coefficients in the K-theory of the structure sheaf OX{displaystyle {mathcal {O}}_{X}}; that is,
- CHq(X)=Hq(X,Kq(OX)){displaystyle operatorname {CH} ^{q}(X)=operatorname {H} ^{q}(X,K_{q}({mathcal {O}}_{X}))}
where the right-hand side is the sheaf cohomology; Kq(OX){displaystyle K_{q}({mathcal {O}}_{X})} is the sheaf associated to the presheaf U↦Kq(U){displaystyle Umapsto K_{q}(U)}, U Zariski open subsets of X. The general case is due to Quillen.[1] For q = 1, one recovers Pic(X)=H1(X,OX∗){displaystyle operatorname {Pic} (X)=H^{1}(X,{mathcal {O}}_{X}^{*})}. (see also Picard group.)
The formula for the mixed characteristic is still open.
References
^ For a sketch of the proof, besides the original paper, see http://www-bcf.usc.edu/~ericmf/lectures/zurich/zlec5.pdf
Daniel Quillen: Higher algebraic K-theory: I. In: H. Bass (ed.): Higher K-Theories. Lecture Notes in Mathematics, vol. 341. Springer-Verlag, Berlin 1973. .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 3-540-06434-6
This algebraic geometry related article is a stub. You can help Wikipedia by expanding it. |