Why not us interferometry to take a picture of Pluto? The 2019 Stack Overflow Developer Survey...
How come people say “Would of”?
Apparent duplicates between Haynes service instructions and MOT
Origin of "cooter" meaning "vagina"
Why do UK politicians seemingly ignore opinion polls on Brexit?
How to support a colleague who finds meetings extremely tiring?
Is an up-to-date browser secure on an out-of-date OS?
Why do we hear so much about the Trump administration deciding to impose and then remove tariffs?
Identify boardgame from Big movie
Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?
Deal with toxic manager when you can't quit
How to type this arrow in math mode?
Multiply Two Integer Polynomials
Output the Arecibo Message
Resizing object distorts it (Illustrator CC 2018)
FPGA - DIY Programming
STM32 programming and BOOT0 pin
For what reasons would an animal species NOT cross a *horizontal* land bridge?
What does "fetching by region is not available for SAM files" means?
How to deal with speedster characters?
Button changing it's text & action. Good or terrible?
How to obtain Confidence Intervals for a LASSO regression?
Worn-tile Scrabble
Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?
Can one be advised by a professor who is very far away?
Why not us interferometry to take a picture of Pluto?
The 2019 Stack Overflow Developer Survey Results Are InReason for disqualifying Pluto as a Planet?Planets and Pluto? Neptune?How long will it take Pluto to grow to planet size?VLT interferometry vs E-ELT?Can the expansion of spacetime be directly measured with laser interferometry (like GW can)Is Pluto a “proto-planet”?Why was the (small) Hubble better able to find KBO targets for New Horizons than large adaptive optics ground telescopes?Why does Jupiter atmosphere does not get thinner on edgesIs Optical VLBI theoretically feasible? If not why not?Why did the Event Horizon Telescope take so long to take a photo of a black hole?
$begingroup$
Interferometry is among the best ways (if not, the best way!) to have an image of a very distant object.
Recently a picture of the black hole at the center of M87 was released. It is the result of several data collected by the Event Horizon Telescope, a series of arrays all across our world, working as one like a giant Earth sized telescope. The picture is not really cutting edge and high definition however it is still very surprising and in a way detailed enough, considering the fact that M87 is 53.49 million light years away... and this is where I arrive to Pluto which is just around 6 to 7 billion kilometers from us.
If we used an interferometer, perhaps the same size as the EHT (or just a smaller one, the size of an entire continent), and point all the arrays at Pluto, then we should have a picture with a resolution that is at least higher as the Hubble Space Telescope, but likely not as high as the pictures from the New Horizons spacecraft which directly made a fly by of Pluto... right?
If so then why don't we use interferometry to take pictures of Pluto from Earth?
planet telescope interferometry
$endgroup$
add a comment |
$begingroup$
Interferometry is among the best ways (if not, the best way!) to have an image of a very distant object.
Recently a picture of the black hole at the center of M87 was released. It is the result of several data collected by the Event Horizon Telescope, a series of arrays all across our world, working as one like a giant Earth sized telescope. The picture is not really cutting edge and high definition however it is still very surprising and in a way detailed enough, considering the fact that M87 is 53.49 million light years away... and this is where I arrive to Pluto which is just around 6 to 7 billion kilometers from us.
If we used an interferometer, perhaps the same size as the EHT (or just a smaller one, the size of an entire continent), and point all the arrays at Pluto, then we should have a picture with a resolution that is at least higher as the Hubble Space Telescope, but likely not as high as the pictures from the New Horizons spacecraft which directly made a fly by of Pluto... right?
If so then why don't we use interferometry to take pictures of Pluto from Earth?
planet telescope interferometry
$endgroup$
add a comment |
$begingroup$
Interferometry is among the best ways (if not, the best way!) to have an image of a very distant object.
Recently a picture of the black hole at the center of M87 was released. It is the result of several data collected by the Event Horizon Telescope, a series of arrays all across our world, working as one like a giant Earth sized telescope. The picture is not really cutting edge and high definition however it is still very surprising and in a way detailed enough, considering the fact that M87 is 53.49 million light years away... and this is where I arrive to Pluto which is just around 6 to 7 billion kilometers from us.
If we used an interferometer, perhaps the same size as the EHT (or just a smaller one, the size of an entire continent), and point all the arrays at Pluto, then we should have a picture with a resolution that is at least higher as the Hubble Space Telescope, but likely not as high as the pictures from the New Horizons spacecraft which directly made a fly by of Pluto... right?
If so then why don't we use interferometry to take pictures of Pluto from Earth?
planet telescope interferometry
$endgroup$
Interferometry is among the best ways (if not, the best way!) to have an image of a very distant object.
Recently a picture of the black hole at the center of M87 was released. It is the result of several data collected by the Event Horizon Telescope, a series of arrays all across our world, working as one like a giant Earth sized telescope. The picture is not really cutting edge and high definition however it is still very surprising and in a way detailed enough, considering the fact that M87 is 53.49 million light years away... and this is where I arrive to Pluto which is just around 6 to 7 billion kilometers from us.
If we used an interferometer, perhaps the same size as the EHT (or just a smaller one, the size of an entire continent), and point all the arrays at Pluto, then we should have a picture with a resolution that is at least higher as the Hubble Space Telescope, but likely not as high as the pictures from the New Horizons spacecraft which directly made a fly by of Pluto... right?
If so then why don't we use interferometry to take pictures of Pluto from Earth?
planet telescope interferometry
planet telescope interferometry
asked 5 hours ago
Victorbrine CassiniVictorbrine Cassini
1212
1212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Radio interferometry can combine observations over very large baselines. But optical interferometry cannot. According to a list of interferometry instruments on wikipedia, the largest baseline for optical measurements is less than a kilometer. We can't take optical measurements with continent-sized instruments.
Then if you drop down to radio where the instruments do have that capability, I think you'll find Pluto is quite dim (it's not a radio source, and there's no strong radio emissions that it can reflect to us). There's no radio signal from Pluto that can be imaged.
From a page on optical interferometry:
Interferometers are seen by most astronomers as very specialized
instruments, as they are capable of a very limited range of
observations. It is often said that an interferometer achieves the
effect of a telescope the size of the distance between the apertures;
this is only true in the limited sense of angular resolution. The
combined effects of limited aperture area and atmospheric turbulence
generally limit interferometers to observations of comparatively
bright stars and active galactic nuclei.
$endgroup$
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "514"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f30334%2fwhy-not-us-interferometry-to-take-a-picture-of-pluto%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Radio interferometry can combine observations over very large baselines. But optical interferometry cannot. According to a list of interferometry instruments on wikipedia, the largest baseline for optical measurements is less than a kilometer. We can't take optical measurements with continent-sized instruments.
Then if you drop down to radio where the instruments do have that capability, I think you'll find Pluto is quite dim (it's not a radio source, and there's no strong radio emissions that it can reflect to us). There's no radio signal from Pluto that can be imaged.
From a page on optical interferometry:
Interferometers are seen by most astronomers as very specialized
instruments, as they are capable of a very limited range of
observations. It is often said that an interferometer achieves the
effect of a telescope the size of the distance between the apertures;
this is only true in the limited sense of angular resolution. The
combined effects of limited aperture area and atmospheric turbulence
generally limit interferometers to observations of comparatively
bright stars and active galactic nuclei.
$endgroup$
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
add a comment |
$begingroup$
Radio interferometry can combine observations over very large baselines. But optical interferometry cannot. According to a list of interferometry instruments on wikipedia, the largest baseline for optical measurements is less than a kilometer. We can't take optical measurements with continent-sized instruments.
Then if you drop down to radio where the instruments do have that capability, I think you'll find Pluto is quite dim (it's not a radio source, and there's no strong radio emissions that it can reflect to us). There's no radio signal from Pluto that can be imaged.
From a page on optical interferometry:
Interferometers are seen by most astronomers as very specialized
instruments, as they are capable of a very limited range of
observations. It is often said that an interferometer achieves the
effect of a telescope the size of the distance between the apertures;
this is only true in the limited sense of angular resolution. The
combined effects of limited aperture area and atmospheric turbulence
generally limit interferometers to observations of comparatively
bright stars and active galactic nuclei.
$endgroup$
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
add a comment |
$begingroup$
Radio interferometry can combine observations over very large baselines. But optical interferometry cannot. According to a list of interferometry instruments on wikipedia, the largest baseline for optical measurements is less than a kilometer. We can't take optical measurements with continent-sized instruments.
Then if you drop down to radio where the instruments do have that capability, I think you'll find Pluto is quite dim (it's not a radio source, and there's no strong radio emissions that it can reflect to us). There's no radio signal from Pluto that can be imaged.
From a page on optical interferometry:
Interferometers are seen by most astronomers as very specialized
instruments, as they are capable of a very limited range of
observations. It is often said that an interferometer achieves the
effect of a telescope the size of the distance between the apertures;
this is only true in the limited sense of angular resolution. The
combined effects of limited aperture area and atmospheric turbulence
generally limit interferometers to observations of comparatively
bright stars and active galactic nuclei.
$endgroup$
Radio interferometry can combine observations over very large baselines. But optical interferometry cannot. According to a list of interferometry instruments on wikipedia, the largest baseline for optical measurements is less than a kilometer. We can't take optical measurements with continent-sized instruments.
Then if you drop down to radio where the instruments do have that capability, I think you'll find Pluto is quite dim (it's not a radio source, and there's no strong radio emissions that it can reflect to us). There's no radio signal from Pluto that can be imaged.
From a page on optical interferometry:
Interferometers are seen by most astronomers as very specialized
instruments, as they are capable of a very limited range of
observations. It is often said that an interferometer achieves the
effect of a telescope the size of the distance between the apertures;
this is only true in the limited sense of angular resolution. The
combined effects of limited aperture area and atmospheric turbulence
generally limit interferometers to observations of comparatively
bright stars and active galactic nuclei.
edited 1 hour ago
answered 4 hours ago
BowlOfRedBowlOfRed
76637
76637
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
add a comment |
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
$begingroup$
Might want to state Pluto is "dim" because it doesn't have many radio emissions (else one might infer you meant light).
$endgroup$
– Magic Octopus Urn
4 hours ago
add a comment |
Thanks for contributing an answer to Astronomy Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f30334%2fwhy-not-us-interferometry-to-take-a-picture-of-pluto%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown