A5 polytope Contents Graphs References External links Notes Navigation menu"5D uniform polytopes...

Multi tool use
5-polytopes
geometryuniform polytopes5-simplexorthographic projectionsCoxeter planesorthographic projectionsCoxeter planes
![]() 5-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
In 5-dimensional geometry, there are 19 uniform polytopes with A5 symmetry. There is one self-dual regular form, the 5-simplex with 6 vertices.
Each can be visualized as symmetric orthographic projections in Coxeter planes of the A5 Coxeter group, and other subgroups.
Contents
1 Graphs
2 References
3 External links
4 Notes
Graphs
Symmetric orthographic projections of these 19 polytopes can be made in the A5, A4, A3, A2Coxeter planes. Ak graphs have [k+1] symmetry. For even k and symmetrically nodea_1ed-diagrams, symmetry doubles to [2(k+1)].
These 19 polytopes are each shown in these 4 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
# |
Coxeter plane graphs |
Coxeter-Dynkin diagram Schläfli symbol Name |
|||
---|---|---|---|---|---|
[6] |
[5] |
[4] |
[3] |
||
A5 |
A4 |
A3 |
A2 |
||
1 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,3,3,3} 5-simplex (hix) |
2 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t1{3,3,3,3} or r{3,3,3,3} Rectified 5-simplex (rix) |
3 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t2{3,3,3,3} or 2r{3,3,3,3} Birectified 5-simplex (dot) |
4 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1{3,3,3,3} or t{3,3,3,3} Truncated 5-simplex (tix) |
5 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t1,2{3,3,3,3} or 2t{3,3,3,3} Bitruncated 5-simplex (bittix) |
6 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,2{3,3,3,3} or rr{3,3,3,3} Cantellated 5-simplex (sarx) |
7 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t1,3{3,3,3,3} or 2rr{3,3,3,3} Bicantellated 5-simplex (sibrid) |
8 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{3,3,3,3} Runcinated 5-simplex (spix) |
9 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,4{3,3,3,3} or 2r2r{3,3,3,3} Stericated 5-simplex (scad) |
10 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2{3,3,3,3} or tr{3,3,3,3} Cantitruncated 5-simplex (garx) |
11 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t1,2,3{3,3,3,3} or 2tr{3,3,3,3} Bicantitruncated 5-simplex (gibrid) |
12 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{3,3,3,3} Runcitruncated 5-simplex (pattix) |
13 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,2,3{3,3,3,3} Runcicantellated 5-simplex (pirx) |
14 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,4{3,3,3,3} Steritruncated 5-simplex (cappix) |
15 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,2,4{3,3,3,3} Stericantellated 5-simplex (card) |
16 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{3,3,3,3} Runcicantitruncated 5-simplex (gippix) |
17 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,4{3,3,3,3} Stericantitruncated 5-simplex (cograx) |
18 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3,4{3,3,3,3} Steriruncitruncated 5-simplex (captid) |
19 |
![]() |
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3,4{3,3,3,3} Omnitruncated 5-simplex (gocad) |
A5 polytopes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
![]() t0 |
![]() t1 |
![]() t2 |
![]() t0,1 |
![]() t0,2 |
![]() t1,2 |
![]() t0,3 |
|||||
![]() t1,3 |
![]() t0,4 |
![]() t0,1,2 |
![]() t0,1,3 |
![]() t0,2,3 |
![]() t1,2,3 |
![]() t0,1,4 |
|||||
![]() t0,2,4 |
![]() t0,1,2,3 |
![]() t0,1,2,4 |
![]() t0,1,3,4 |
![]() t0,1,2,3,4 |
References
H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 978-0-471-01003-6 [1]- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
External links
Klitzing, Richard. "5D uniform polytopes (polytera)".
Notes
^ Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family |
An |
Bn |
I2(p) / Dn |
E6 / E7 / E8 / F4 / G2 |
Hn |
|||||||
Regular polygon |
Triangle |
Square |
p-gon |
Hexagon |
Pentagon |
|||||||
Uniform polyhedron |
Tetrahedron |
Octahedron • Cube |
Demicube |
Dodecahedron • Icosahedron |
||||||||
Uniform 4-polytope |
5-cell |
16-cell • Tesseract |
Demitesseract |
24-cell |
120-cell • 600-cell |
|||||||
Uniform 5-polytope |
5-simplex |
5-orthoplex • 5-cube |
5-demicube |
|||||||||
Uniform 6-polytope |
6-simplex |
6-orthoplex • 6-cube |
6-demicube |
122 • 221 |
||||||||
Uniform 7-polytope |
7-simplex |
7-orthoplex • 7-cube |
7-demicube |
132 • 231 • 321 |
||||||||
Uniform 8-polytope |
8-simplex |
8-orthoplex • 8-cube |
8-demicube |
142 • 241 • 421 |
||||||||
Uniform 9-polytope |
9-simplex |
9-orthoplex • 9-cube |
9-demicube |
|||||||||
Uniform 10-polytope |
10-simplex |
10-orthoplex • 10-cube |
10-demicube |
|||||||||
Uniform n-polytope |
n-simplex |
n-orthoplex • n-cube |
n-demicube |
1k2 • 2k1 • k21 |
n-pentagonal polytope |
|||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |
Fn LA vROj3N8YYvGTlS62tw62hPL5BtbZO7ommM16lc7qWJrq jnN5dp7AvBw2FJr4Dyv3HV,o,8Ci7GG9pG,gaWJR