A5 polytope Contents Graphs References External links Notes Navigation menu"5D uniform polytopes...


5-polytopes


geometryuniform polytopes5-simplexorthographic projectionsCoxeter planesorthographic projectionsCoxeter planes








Orthographic projections
A5Coxeter plane

5-simplex t0.svg
5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

In 5-dimensional geometry, there are 19 uniform polytopes with A5 symmetry. There is one self-dual regular form, the 5-simplex with 6 vertices.


Each can be visualized as symmetric orthographic projections in Coxeter planes of the A5 Coxeter group, and other subgroups.




Contents






  • 1 Graphs


  • 2 References


  • 3 External links


  • 4 Notes





Graphs


Symmetric orthographic projections of these 19 polytopes can be made in the A5, A4, A3, A2Coxeter planes. Ak graphs have [k+1] symmetry. For even k and symmetrically nodea_1ed-diagrams, symmetry doubles to [2(k+1)].


These 19 polytopes are each shown in these 4 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.












































































































































































#

Coxeter plane graphs

Coxeter-Dynkin diagram
Schläfli symbol
Name
[6]
[5]
[4]
[3]
A5
A4
A3
A2
1

5-simplex t0.svg

5-simplex t0 A4.svg

5-simplex t0 A3.svg

5-simplex t0 A2.svg

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3,3,3}
5-simplex (hix)
2

5-simplex t1.svg

5-simplex t1 A4.svg

5-simplex t1 A3.svg

5-simplex t1 A2.svg

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t1{3,3,3,3} or r{3,3,3,3}
Rectified 5-simplex (rix)
3

5-simplex t2.svg

5-simplex t2 A4.svg

5-simplex t2 A3.svg

5-simplex t2 A2.svg

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t2{3,3,3,3} or 2r{3,3,3,3}
Birectified 5-simplex (dot)
4

5-simplex t01.svg

5-simplex t01 A4.svg

5-simplex t01 A3.svg

5-simplex t01 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t0,1{3,3,3,3} or t{3,3,3,3}
Truncated 5-simplex (tix)
5

5-simplex t12.svg

5-simplex t12 A4.svg

5-simplex t12 A3.svg

5-simplex t12 A2.svg

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t1,2{3,3,3,3} or 2t{3,3,3,3}
Bitruncated 5-simplex (bittix)
6

5-simplex t02.svg

5-simplex t02 A4.svg

5-simplex t02 A3.svg

5-simplex t02 A2.svg

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t0,2{3,3,3,3} or rr{3,3,3,3}
Cantellated 5-simplex (sarx)
7

5-simplex t13.svg

5-simplex t13 A4.svg

5-simplex t13 A3.svg

5-simplex t13 A2.svg

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,3{3,3,3,3} or 2rr{3,3,3,3}
Bicantellated 5-simplex (sibrid)
8

5-simplex t03.svg

5-simplex t03 A4.svg

5-simplex t03 A3.svg

5-simplex t03 A2.svg

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,3{3,3,3,3}
Runcinated 5-simplex (spix)
9

5-simplex t04.svg

5-simplex t04 A4.svg

5-simplex t04 A3.svg

5-simplex t04 A2.svg

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,4{3,3,3,3} or 2r2r{3,3,3,3}
Stericated 5-simplex (scad)
10

5-simplex t012.svg

5-simplex t012 A4.svg

5-simplex t012 A3.svg

5-simplex t012 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t0,1,2{3,3,3,3} or tr{3,3,3,3}
Cantitruncated 5-simplex (garx)
11

5-simplex t123.svg

5-simplex t123 A4.svg

5-simplex t123 A3.svg

5-simplex t123 A2.svg

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2,3{3,3,3,3} or 2tr{3,3,3,3}
Bicantitruncated 5-simplex (gibrid)
12

5-simplex t013.svg

5-simplex t013 A4.svg

5-simplex t013 A3.svg

5-simplex t013 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,3{3,3,3,3}
Runcitruncated 5-simplex (pattix)
13

5-simplex t023.svg

5-simplex t023 A4.svg

5-simplex t023 A3.svg

5-simplex t023 A2.svg

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2,3{3,3,3,3}
Runcicantellated 5-simplex (pirx)
14

5-simplex t014.svg

5-simplex t014 A4.svg

5-simplex t014 A3.svg

5-simplex t014 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,4{3,3,3,3}
Steritruncated 5-simplex (cappix)
15

5-simplex t024.svg

5-simplex t024 A4.svg

5-simplex t024 A3.svg

5-simplex t024 A2.svg

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2,4{3,3,3,3}
Stericantellated 5-simplex (card)
16

5-simplex t0123.svg

5-simplex t0123 A4.svg

5-simplex t0123 A3.svg

5-simplex t0123 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2,3{3,3,3,3}
Runcicantitruncated 5-simplex (gippix)
17

5-simplex t0124.svg

5-simplex t0124 A4.svg

5-simplex t0124 A3.svg

5-simplex t0124 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,2,4{3,3,3,3}
Stericantitruncated 5-simplex (cograx)
18

5-simplex t0134.svg

5-simplex t0134 A4.svg

5-simplex t0134 A3.svg

5-simplex t0134 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3,4{3,3,3,3}
Steriruncitruncated 5-simplex (captid)
19

5-simplex t01234.svg

5-simplex t01234 A4.svg

5-simplex t01234 A3.svg

5-simplex t01234 A2.svg

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3,4{3,3,3,3}
Omnitruncated 5-simplex (gocad)
































References




  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973



  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 978-0-471-01003-6 [1]

    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]

    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]

    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]




  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966



External links



  • Klitzing, Richard. "5D uniform polytopes (polytera)".


Notes





  1. ^ Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
































































































Fundamental convex regular and uniform polytopes in dimensions 2–10


Family

An

Bn

I2(p) / Dn

E6 / E7 / E8 / F4 / G2

Hn

Regular polygon

Triangle

Square

p-gon

Hexagon

Pentagon

Uniform polyhedron

Tetrahedron

Octahedron • Cube

Demicube


Dodecahedron • Icosahedron

Uniform 4-polytope

5-cell

16-cell • Tesseract

Demitesseract

24-cell

120-cell • 600-cell

Uniform 5-polytope

5-simplex

5-orthoplex • 5-cube

5-demicube



Uniform 6-polytope

6-simplex

6-orthoplex • 6-cube

6-demicube

122 • 221


Uniform 7-polytope

7-simplex

7-orthoplex • 7-cube

7-demicube

132 • 231 • 321


Uniform 8-polytope

8-simplex

8-orthoplex • 8-cube

8-demicube

142 • 241 • 421


Uniform 9-polytope

9-simplex

9-orthoplex • 9-cube

9-demicube



Uniform 10-polytope

10-simplex

10-orthoplex • 10-cube

10-demicube


Uniform n-polytope

n-simplex

n-orthoplex • n-cube

n-demicube

1k2 • 2k1 • k21

n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds



Popular posts from this blog

Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...