A5 polytope Contents Graphs References External links Notes Navigation menu"5D uniform polytopes...
5-polytopes
geometryuniform polytopes5-simplexorthographic projectionsCoxeter planesorthographic projectionsCoxeter planes
5-simplex |
In 5-dimensional geometry, there are 19 uniform polytopes with A5 symmetry. There is one self-dual regular form, the 5-simplex with 6 vertices.
Each can be visualized as symmetric orthographic projections in Coxeter planes of the A5 Coxeter group, and other subgroups.
Contents
1 Graphs
2 References
3 External links
4 Notes
Graphs
Symmetric orthographic projections of these 19 polytopes can be made in the A5, A4, A3, A2Coxeter planes. Ak graphs have [k+1] symmetry. For even k and symmetrically nodea_1ed-diagrams, symmetry doubles to [2(k+1)].
These 19 polytopes are each shown in these 4 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
# | Coxeter plane graphs | Coxeter-Dynkin diagram Schläfli symbol Name | |||
---|---|---|---|---|---|
[6] | [5] | [4] | [3] | ||
A5 | A4 | A3 | A2 | ||
1 | {3,3,3,3} 5-simplex (hix) | ||||
2 | t1{3,3,3,3} or r{3,3,3,3} Rectified 5-simplex (rix) | ||||
3 | t2{3,3,3,3} or 2r{3,3,3,3} Birectified 5-simplex (dot) | ||||
4 | t0,1{3,3,3,3} or t{3,3,3,3} Truncated 5-simplex (tix) | ||||
5 | t1,2{3,3,3,3} or 2t{3,3,3,3} Bitruncated 5-simplex (bittix) | ||||
6 | t0,2{3,3,3,3} or rr{3,3,3,3} Cantellated 5-simplex (sarx) | ||||
7 | t1,3{3,3,3,3} or 2rr{3,3,3,3} Bicantellated 5-simplex (sibrid) | ||||
8 | t0,3{3,3,3,3} Runcinated 5-simplex (spix) | ||||
9 | t0,4{3,3,3,3} or 2r2r{3,3,3,3} Stericated 5-simplex (scad) | ||||
10 | t0,1,2{3,3,3,3} or tr{3,3,3,3} Cantitruncated 5-simplex (garx) | ||||
11 | t1,2,3{3,3,3,3} or 2tr{3,3,3,3} Bicantitruncated 5-simplex (gibrid) | ||||
12 | t0,1,3{3,3,3,3} Runcitruncated 5-simplex (pattix) | ||||
13 | t0,2,3{3,3,3,3} Runcicantellated 5-simplex (pirx) | ||||
14 | t0,1,4{3,3,3,3} Steritruncated 5-simplex (cappix) | ||||
15 | t0,2,4{3,3,3,3} Stericantellated 5-simplex (card) | ||||
16 | t0,1,2,3{3,3,3,3} Runcicantitruncated 5-simplex (gippix) | ||||
17 | t0,1,2,4{3,3,3,3} Stericantitruncated 5-simplex (cograx) | ||||
18 | t0,1,3,4{3,3,3,3} Steriruncitruncated 5-simplex (captid) | ||||
19 | t0,1,2,3,4{3,3,3,3} Omnitruncated 5-simplex (gocad) |
A5 polytopes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
t0 | t1 | t2 | t0,1 | t0,2 | t1,2 | t0,3 | |||||
t1,3 | t0,4 | t0,1,2 | t0,1,3 | t0,2,3 | t1,2,3 | t0,1,4 | |||||
t0,2,4 | t0,1,2,3 | t0,1,2,4 | t0,1,3,4 | t0,1,2,3,4 |
References
H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 978-0-471-01003-6 [1]- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
External links
Klitzing, Richard. "5D uniform polytopes (polytera)".
Notes
^ Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |