I need to find the potential function of a vector field. Announcing the arrival of Valued...

How do I stop a creek from eroding my steep embankment?

When -s is used with third person singular. What's its use in this context?

Why did the IBM 650 use bi-quinary?

How to bypass password on Windows XP account?

Is there a "higher Segal conjecture"?

If a contract sometimes uses the wrong name, is it still valid?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Is the Standard Deduction better than Itemized when both are the same amount?

What's the purpose of writing one's academic bio in 3rd person?

Doubts about chords

How to motivate offshore teams and trust them to deliver?

Does accepting a pardon have any bearing on trying that person for the same crime in a sovereign jurisdiction?

Why one of virtual NICs called bond0?

Why is "Consequences inflicted." not a sentence?

Is it true that "carbohydrates are of no use for the basal metabolic need"?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

What is the correct way to use the pinch test for dehydration?

When to stop saving and start investing?

Why are there no cargo aircraft with "flying wing" design?

Models of set theory where not every set can be linearly ordered

Check which numbers satisfy the condition [A*B*C = A! + B! + C!]

What does the "x" in "x86" represent?

3 doors, three guards, one stone

How to recreate this effect in Photoshop?



I need to find the potential function of a vector field.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Calculating the Integral of a non conservative vector fieldFind the potential function of a conservative vector fieldTwo ways of finding a Potential of a Vector FieldFinding potential function for a vector fieldVector Field Conceptual QuestionIs there a specific notation to denote the potential function of a conservative vector field?Every conservative vector field is irrotationalQuestions about the potential of a conservative vector fieldWhy do we need both Divergence and Curl to define a vector field?How to check if a 2 dimensional vector field is irrotational (curl=0)?












1












$begingroup$


I was given F = (y+z)i + (x+z)j + (x+y)k. I found said field to be conservative, and I integrated the x partial derivative and got f(x,y,z) = xy + xz + g(y,z). The thing is that I am trying to find g(y,z), and I ended up with something that was expressed in terms of x, y and z (I got x+z-xy-xz). I don't know what to do with this information not that I arrived at something expressed in all three variables.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I was given F = (y+z)i + (x+z)j + (x+y)k. I found said field to be conservative, and I integrated the x partial derivative and got f(x,y,z) = xy + xz + g(y,z). The thing is that I am trying to find g(y,z), and I ended up with something that was expressed in terms of x, y and z (I got x+z-xy-xz). I don't know what to do with this information not that I arrived at something expressed in all three variables.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I was given F = (y+z)i + (x+z)j + (x+y)k. I found said field to be conservative, and I integrated the x partial derivative and got f(x,y,z) = xy + xz + g(y,z). The thing is that I am trying to find g(y,z), and I ended up with something that was expressed in terms of x, y and z (I got x+z-xy-xz). I don't know what to do with this information not that I arrived at something expressed in all three variables.










      share|cite|improve this question









      $endgroup$




      I was given F = (y+z)i + (x+z)j + (x+y)k. I found said field to be conservative, and I integrated the x partial derivative and got f(x,y,z) = xy + xz + g(y,z). The thing is that I am trying to find g(y,z), and I ended up with something that was expressed in terms of x, y and z (I got x+z-xy-xz). I don't know what to do with this information not that I arrived at something expressed in all three variables.







      integration multivariable-calculus vector-fields






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      UchuukoUchuuko

      367




      367






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          You have $frac{partial f}{partial x}= y+ z$ so that $f(x,y,z)= xy+ xz+ g(y,z)$. (Since the differentiation with respect to x treat y and z as constants, the "constant of integration" might in fact be a function of y and z. That is the "g(y, z)".)



          Differentiating that with respect to y, $frac{partial f}{partial y}= x+ g_y(y, z)= x+ z$ so that $g_y= z$ and $g(y, z)= yz+ h(z)$.



          So f(x,y,z)= xy+ xz+ yz+ h(z). Differentiating that with respect to z, $frac{partial f}{partial z}= x+ y+ h'(z)= x+ y$ so that h'(z)= 0. h is a constant, C so that we get f(x, y, z)= xy+ xz+ yz+ C.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            So far, we have $f(x,y,z) = xy + xz + g(y,z)$. Taking $frac{partial f}{partial x}$ gives us the $x$-component of $textbf{F}$. To get similar $y$ and $z$-components, we suspect that $g(y,z)$ should be similar to the other terms in $f(x,y,z)$ in some sense. The natural guess is $g(y,z) = yz$, since the other terms in $f(x,y,z)$ are each multiplications of two different independent variables. It can then be verified that the guess for $g$ produces the correct vector field, by computing $nabla f$.



            We now know that we have determined the potential function up to a constant, since if two scalar fields have the same gradient, then they differ by a constant.



            A note of caution: sometimes the convention for what is meant by a potential function for a vector field $mathbf{F}$, is a scalar field $f$ such that $mathbf{F} = - nabla f$. Beware!






            share|cite|improve this answer











            $endgroup$














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189329%2fi-need-to-find-the-potential-function-of-a-vector-field%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              You have $frac{partial f}{partial x}= y+ z$ so that $f(x,y,z)= xy+ xz+ g(y,z)$. (Since the differentiation with respect to x treat y and z as constants, the "constant of integration" might in fact be a function of y and z. That is the "g(y, z)".)



              Differentiating that with respect to y, $frac{partial f}{partial y}= x+ g_y(y, z)= x+ z$ so that $g_y= z$ and $g(y, z)= yz+ h(z)$.



              So f(x,y,z)= xy+ xz+ yz+ h(z). Differentiating that with respect to z, $frac{partial f}{partial z}= x+ y+ h'(z)= x+ y$ so that h'(z)= 0. h is a constant, C so that we get f(x, y, z)= xy+ xz+ yz+ C.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                You have $frac{partial f}{partial x}= y+ z$ so that $f(x,y,z)= xy+ xz+ g(y,z)$. (Since the differentiation with respect to x treat y and z as constants, the "constant of integration" might in fact be a function of y and z. That is the "g(y, z)".)



                Differentiating that with respect to y, $frac{partial f}{partial y}= x+ g_y(y, z)= x+ z$ so that $g_y= z$ and $g(y, z)= yz+ h(z)$.



                So f(x,y,z)= xy+ xz+ yz+ h(z). Differentiating that with respect to z, $frac{partial f}{partial z}= x+ y+ h'(z)= x+ y$ so that h'(z)= 0. h is a constant, C so that we get f(x, y, z)= xy+ xz+ yz+ C.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  You have $frac{partial f}{partial x}= y+ z$ so that $f(x,y,z)= xy+ xz+ g(y,z)$. (Since the differentiation with respect to x treat y and z as constants, the "constant of integration" might in fact be a function of y and z. That is the "g(y, z)".)



                  Differentiating that with respect to y, $frac{partial f}{partial y}= x+ g_y(y, z)= x+ z$ so that $g_y= z$ and $g(y, z)= yz+ h(z)$.



                  So f(x,y,z)= xy+ xz+ yz+ h(z). Differentiating that with respect to z, $frac{partial f}{partial z}= x+ y+ h'(z)= x+ y$ so that h'(z)= 0. h is a constant, C so that we get f(x, y, z)= xy+ xz+ yz+ C.






                  share|cite|improve this answer









                  $endgroup$



                  You have $frac{partial f}{partial x}= y+ z$ so that $f(x,y,z)= xy+ xz+ g(y,z)$. (Since the differentiation with respect to x treat y and z as constants, the "constant of integration" might in fact be a function of y and z. That is the "g(y, z)".)



                  Differentiating that with respect to y, $frac{partial f}{partial y}= x+ g_y(y, z)= x+ z$ so that $g_y= z$ and $g(y, z)= yz+ h(z)$.



                  So f(x,y,z)= xy+ xz+ yz+ h(z). Differentiating that with respect to z, $frac{partial f}{partial z}= x+ y+ h'(z)= x+ y$ so that h'(z)= 0. h is a constant, C so that we get f(x, y, z)= xy+ xz+ yz+ C.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  user247327user247327

                  11.6k1516




                  11.6k1516























                      1












                      $begingroup$

                      So far, we have $f(x,y,z) = xy + xz + g(y,z)$. Taking $frac{partial f}{partial x}$ gives us the $x$-component of $textbf{F}$. To get similar $y$ and $z$-components, we suspect that $g(y,z)$ should be similar to the other terms in $f(x,y,z)$ in some sense. The natural guess is $g(y,z) = yz$, since the other terms in $f(x,y,z)$ are each multiplications of two different independent variables. It can then be verified that the guess for $g$ produces the correct vector field, by computing $nabla f$.



                      We now know that we have determined the potential function up to a constant, since if two scalar fields have the same gradient, then they differ by a constant.



                      A note of caution: sometimes the convention for what is meant by a potential function for a vector field $mathbf{F}$, is a scalar field $f$ such that $mathbf{F} = - nabla f$. Beware!






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        So far, we have $f(x,y,z) = xy + xz + g(y,z)$. Taking $frac{partial f}{partial x}$ gives us the $x$-component of $textbf{F}$. To get similar $y$ and $z$-components, we suspect that $g(y,z)$ should be similar to the other terms in $f(x,y,z)$ in some sense. The natural guess is $g(y,z) = yz$, since the other terms in $f(x,y,z)$ are each multiplications of two different independent variables. It can then be verified that the guess for $g$ produces the correct vector field, by computing $nabla f$.



                        We now know that we have determined the potential function up to a constant, since if two scalar fields have the same gradient, then they differ by a constant.



                        A note of caution: sometimes the convention for what is meant by a potential function for a vector field $mathbf{F}$, is a scalar field $f$ such that $mathbf{F} = - nabla f$. Beware!






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          So far, we have $f(x,y,z) = xy + xz + g(y,z)$. Taking $frac{partial f}{partial x}$ gives us the $x$-component of $textbf{F}$. To get similar $y$ and $z$-components, we suspect that $g(y,z)$ should be similar to the other terms in $f(x,y,z)$ in some sense. The natural guess is $g(y,z) = yz$, since the other terms in $f(x,y,z)$ are each multiplications of two different independent variables. It can then be verified that the guess for $g$ produces the correct vector field, by computing $nabla f$.



                          We now know that we have determined the potential function up to a constant, since if two scalar fields have the same gradient, then they differ by a constant.



                          A note of caution: sometimes the convention for what is meant by a potential function for a vector field $mathbf{F}$, is a scalar field $f$ such that $mathbf{F} = - nabla f$. Beware!






                          share|cite|improve this answer











                          $endgroup$



                          So far, we have $f(x,y,z) = xy + xz + g(y,z)$. Taking $frac{partial f}{partial x}$ gives us the $x$-component of $textbf{F}$. To get similar $y$ and $z$-components, we suspect that $g(y,z)$ should be similar to the other terms in $f(x,y,z)$ in some sense. The natural guess is $g(y,z) = yz$, since the other terms in $f(x,y,z)$ are each multiplications of two different independent variables. It can then be verified that the guess for $g$ produces the correct vector field, by computing $nabla f$.



                          We now know that we have determined the potential function up to a constant, since if two scalar fields have the same gradient, then they differ by a constant.



                          A note of caution: sometimes the convention for what is meant by a potential function for a vector field $mathbf{F}$, is a scalar field $f$ such that $mathbf{F} = - nabla f$. Beware!







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 2 hours ago

























                          answered 2 hours ago









                          E-muE-mu

                          1214




                          1214






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189329%2fi-need-to-find-the-potential-function-of-a-vector-field%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

                              Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

                              Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...