Ambiguity in the definition of entropyHow are possible microstates discerned in Gibb's entropy...

What are the G forces leaving Earth orbit?

What's the meaning of "Sollensaussagen"?

Can someone clarify Hamming's notion of important problems in relation to modern academia?

Implication of namely

How to install cross-compiler on Ubuntu 18.04?

Avoiding the "not like other girls" trope?

OP Amp not amplifying audio signal

How to coordinate airplane tickets?

How can a day be of 24 hours?

One verb to replace 'be a member of' a club

Is there a hemisphere-neutral way of specifying a season?

How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction

What historical events would have to change in order to make 19th century "steampunk" technology possible?

Car headlights in a world without electricity

Mathematica command that allows it to read my intentions

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

files created then deleted at every second in tmp directory

Ambiguity in the definition of entropy

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

Can compressed videos be decoded back to their uncompresed original format?

Why is the sentence "Das ist eine Nase" correct?

How does a dynamic QR code work?

Where would I need my direct neural interface to be implanted?

In the UK, is it possible to get a referendum by a court decision?



Ambiguity in the definition of entropy


How are possible microstates discerned in Gibb's entropy formula?Statistical interpretation of EntropyEntropy as an arrow of timeWhat precisely does the 2nd law of thermo state, considering that entropy depends on how we define macrostate?The statistical interpretation of EntropyWhat is the cause for the inclusion of 'thermal equilibrium' in the statement of Ergodic hypothesis?Do the results of statistical mechanics depend upon the choice of macrostates?Entropy definition, additivity, laws in different ensemblesDefinition of entropy and other StatMech variablesWhat is the definition of entropy in microcanonical ensemble?













2












$begingroup$


The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?










      share|cite|improve this question











      $endgroup$




      The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?







      statistical-mechanics entropy






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 56 mins ago







      PiKindOfGuy

















      asked 1 hour ago









      PiKindOfGuyPiKindOfGuy

      601622




      601622






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



          Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "151"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



              Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






              share|cite|improve this answer









              $endgroup$


















                6












                $begingroup$

                Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



                Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






                share|cite|improve this answer









                $endgroup$
















                  6












                  6








                  6





                  $begingroup$

                  Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



                  Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






                  share|cite|improve this answer









                  $endgroup$



                  Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



                  Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 1 hour ago









                  AcccumulationAcccumulation

                  2,784312




                  2,784312























                      4












                      $begingroup$

                      Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






                      share|cite|improve this answer









                      $endgroup$


















                        4












                        $begingroup$

                        Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






                        share|cite|improve this answer









                        $endgroup$
















                          4












                          4








                          4





                          $begingroup$

                          Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






                          share|cite|improve this answer









                          $endgroup$



                          Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 1 hour ago









                          CR DrostCR Drost

                          22.5k11961




                          22.5k11961






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

                              Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

                              Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...