Proving by induction of n. Is this correct until this point?prove inequality by induction — Discrete...

Why isn't KTEX's runway designation 10/28 instead of 9/27?

Resetting two CD4017 counters simultaneously, only one resets

Could solar power be utilized and substitute coal in the 19th century?

Reply ‘no position’ while the job posting is still there (‘HiWi’ position in Germany)

Can a malicious addon access internet history and such in chrome/firefox?

Invariance of results when scaling explanatory variables in logistic regression, is there a proof?

Why are on-board computers allowed to change controls without notifying the pilots?

How can a jailer prevent the Forge Cleric's Artisan's Blessing from being used?

What was required to accept "troll"?

Was the picture area of a CRT a parallelogram (instead of a true rectangle)?

Word describing multiple paths to the same abstract outcome

Pronouncing Homer as in modern Greek

Freedom of speech and where it applies

Is there an Impartial Brexit Deal comparison site?

Adding empty element to declared container without declaring type of element

Lightning Web Component - do I need to track changes for every single input field in a form

What does the "3am" section means in manpages?

Is there enough fresh water in the world to eradicate the drinking water crisis?

Calculating the number of days between 2 dates in Excel

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Can the electrostatic force be infinite in magnitude?

Greatest common substring

Can I use my Chinese passport to enter China after I acquired another citizenship?

Is exact Kanji stroke length important?



Proving by induction of n. Is this correct until this point?


prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^{3}$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_{k=1}^n (k+1)2^{k} = n2^{n+1} $5. Prove by induction on $n$ that $sumlimits_{k=1}^n frac k{k+1} leq n - frac1{n+1}$Prove by induction on n that $sumlimits_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}$Prove by induction on n that $sumlimits_{k=1}^n frac {2^{k}}{k} leq 2^{n}$













4












$begingroup$



$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$




Base Case:



I did $n = 1$, so..



LHS-



$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$



RHS-



$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$



so LHS = RHS



Inductive case-



LHS for $n+1$



$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$



and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$



and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into



$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$



$$=$$



$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$



$$=$$



$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



then put it back in with the rest of the equation, bringing me to



$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



then



$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



and



$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$



$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$



which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?



$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$



canceling out $2^{n}$



$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$



and I'm stuck, please help!










share|cite|improve this question









$endgroup$

















    4












    $begingroup$



    $$
    sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
    $$




    Base Case:



    I did $n = 1$, so..



    LHS-



    $$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$



    RHS-



    $$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$



    so LHS = RHS



    Inductive case-



    LHS for $n+1$



    $$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$



    and then I think that you can use inductive hypothesis to change it to the form of
    $$
    frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
    $$



    and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into



    $$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$



    $$=$$



    $$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$



    $$=$$



    $$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



    then put it back in with the rest of the equation, bringing me to



    $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



    then



    $$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



    and



    $$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$



    $$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$



    which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?



    $$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$



    canceling out $2^{n}$



    $$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$



    and I'm stuck, please help!










    share|cite|improve this question









    $endgroup$















      4












      4








      4


      1



      $begingroup$



      $$
      sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$



      RHS-



      $$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
      $$



      and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into



      $$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$



      $$=$$



      $$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$



      $$=$$



      $$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



      then put it back in with the rest of the equation, bringing me to



      $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



      then



      $$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



      and



      $$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$



      $$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$



      which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?



      $$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$



      canceling out $2^{n}$



      $$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$



      and I'm stuck, please help!










      share|cite|improve this question









      $endgroup$





      $$
      sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$



      RHS-



      $$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
      $$



      and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into



      $$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$



      $$=$$



      $$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$



      $$=$$



      $$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



      then put it back in with the rest of the equation, bringing me to



      $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



      then



      $$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$



      and



      $$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$



      $$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$



      which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?



      $$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$



      canceling out $2^{n}$



      $$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$



      and I'm stuck, please help!







      discrete-mathematics induction






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      BrownieBrownie

      1927




      1927






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Your error is just after the sixth step from the bottom:



          $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$



          Then you are done.



          You accidentally added the two middle terms instead of subtracting.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Using a telescoping sum, we get
            $$
            begin{align}
            sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
            &=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
            &=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
            &=frac12-frac1{(n+1)2^{n+1}}
            end{align}
            $$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Your error is just after the sixth step from the bottom:



              $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$



              Then you are done.



              You accidentally added the two middle terms instead of subtracting.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Your error is just after the sixth step from the bottom:



                $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$



                Then you are done.



                You accidentally added the two middle terms instead of subtracting.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Your error is just after the sixth step from the bottom:



                  $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.






                  share|cite|improve this answer









                  $endgroup$



                  Your error is just after the sixth step from the bottom:



                  $$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  John Wayland BalesJohn Wayland Bales

                  15.1k21238




                  15.1k21238























                      2












                      $begingroup$

                      Using a telescoping sum, we get
                      $$
                      begin{align}
                      sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
                      &=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
                      &=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
                      &=frac12-frac1{(n+1)2^{n+1}}
                      end{align}
                      $$






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Using a telescoping sum, we get
                        $$
                        begin{align}
                        sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
                        &=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
                        &=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
                        &=frac12-frac1{(n+1)2^{n+1}}
                        end{align}
                        $$






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Using a telescoping sum, we get
                          $$
                          begin{align}
                          sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
                          &=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
                          &=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
                          &=frac12-frac1{(n+1)2^{n+1}}
                          end{align}
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          Using a telescoping sum, we get
                          $$
                          begin{align}
                          sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
                          &=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
                          &=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
                          &=frac12-frac1{(n+1)2^{n+1}}
                          end{align}
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          robjohnrobjohn

                          270k27312639




                          270k27312639






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

                              Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

                              Should I use Docker or LXD?How to cache (more) data on SSD/RAM to avoid spin up?Unable to get Windows File...