calculus parametric curve length The Next CEO of Stack OverflowFind the length of the...
Indicator light circuit
Why did we only see the N-1 starfighters in one film?
Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?
How to avoid supervisors with prejudiced views?
Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis
Between two walls
Does it take more energy to get to Venus or to Mars?
Bold, vivid family
Novel about a guy who is possessed by the divine essence and the world ends?
What happened in Rome, when the western empire "fell"?
What can we do to stop prior company from asking us questions?
Contours of a clandestine nature
Complex fractions
SQL Server 2016 - excessive memory grant warning on poor performing query
How do scammers retract money, while you can’t?
Return the Closest Prime Number
calculus parametric curve length
Should I tutor a student who I know has cheated on their homework?
In excess I'm lethal
Is it professional to write unrelated content in an almost-empty email?
If the heap is initialized for security, then why is the stack uninitialized?
Rotate a column
What was the first Unix version to run on a microcomputer?
Are there any unintended negative consequences to allowing PCs to gain multiple levels at once in a short milestone-XP game?
calculus parametric curve length
The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^{frac92}$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
$endgroup$
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^{frac92}$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
$endgroup$
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
add a comment |
$begingroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^{frac92}$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
$endgroup$
Find the length of the following parametric curve.
$x = 5 + frac92 t^3$ , $y = 4 + 3 t^{frac92}$ , $0 leq t leq 2$.
I used integration and after some point I got lost :( Can anyone show me the steps?
calculus parametric
calculus parametric
edited 4 hours ago
Matt A Pelto
2,667621
2,667621
asked 4 hours ago
McAMcA
224
224
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
add a comment |
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
add a comment |
$begingroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
$endgroup$
Apply the formula for arc length, we get
$$
int_0^2 frac{27{{t}^{2}},sqrt{{{t}^{3}}+1}}{2} dt
$$
Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrt{v} dv = 78.
$$
New contributor
New contributor
answered 4 hours ago
EagleToLearnEagleToLearn
233
233
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
add a comment |
$begingroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
$endgroup$
begin{aligned}L&=int_0^2 sqrt{frac{729}4t^4+frac{729}4t^7}dt\&=int_0^2sqrt{frac{729}4t^4(1+t^3)}dt\&=frac{27}2int_0^2t^2(1+t^3)^{frac12}dt\&=3(1+t^3)^{frac32}big]_0^2end{aligned}
Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^{frac32}$ is an antiderivative of $f(t)=frac{27}2t^2(1+t^3)^{frac12}$.
edited 3 hours ago
answered 4 hours ago
Matt A PeltoMatt A Pelto
2,667621
2,667621
add a comment |
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
add a comment |
$begingroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
$endgroup$
You must use the formula $$int_{0}^{2}sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
$$dx=frac{9}{2}3t^2dt$$ and $$dy=3cdot frac{9}{2}t^{7/2}dt$$
answered 4 hours ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.2k42867
78.2k42867
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is this $$x=5+frac{9}{2}t^3,y=4+3t^{9/2}$$?
$endgroup$
– Dr. Sonnhard Graubner
4 hours ago