Why is this code so slow? The 2019 Stack Overflow Developer Survey Results Are InWhy is...
The difference between dialogue marks
Worn-tile Scrabble
Ubuntu Server install with full GUI
Is bread bad for ducks?
Keeping a retro style to sci-fi spaceships?
Can withdrawing asylum be illegal?
Geography at the pixel level
What force causes entropy to increase?
Why doesn't UInt have a toDouble()?
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Why did Peik say, "I'm not an animal"?
How do PCB vias affect signal quality?
ELI5: Why they say that Israel would have been the fourth country to land a spacecraft on the Moon and why they call it low cost?
Is it okay to consider publishing in my first year of PhD?
Are spiders unable to hurt humans, especially very small spiders?
Dropping list elements from nested list after evaluation
Mathematics of imaging the black hole
How did passengers keep warm on sail ships?
What is the meaning of Triage in Cybersec world?
Why not take a picture of a closer black hole?
Why didn't the Event Horizon Telescope team mention Sagittarius A*?
Kerning for subscripts of sigma?
Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?
What do I do when my TA workload is more than expected?
Why is this code so slow?
The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
$endgroup$
add a comment |
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
$endgroup$
add a comment |
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
$endgroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
equation-solving iteration
asked 2 hours ago
morapimorapi
203
203
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
edited 1 hour ago
answered 1 hour ago
RomanRoman
5,11011130
5,11011130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown