Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low)...

Can you use Vicious Mockery to win an argument or gain favours?

Is this part of the description of the Archfey warlock's Misty Escape feature redundant?

What kind of floor tile is this?

How would you translate "more" for use as an interface button?

Does the Linux kernel need a file system to run?

Doesn't the system of the Supreme Court oppose justice?

Is this toilet slogan correct usage of the English language?

Why is the "ls" command showing permissions of files in a FAT32 partition?

What does "Scientists rise up against statistical significance" mean? (Comment in Nature)

What is the highest possible scrabble score for placing a single tile

What is Cash Advance APR?

How to get directions in deep space?

Pre-mixing cryogenic fuels and using only one fuel tank

Why is the Sun approximated as a black body at ~ 5800 K?

Does "he squandered his car on drink" sound natural?

Taxes on Dividends in a Roth IRA

Is there a RAID 0 Equivalent for RAM?

Biological Blimps: Propulsion

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

How could a planet have erratic days?

Why does Carol not get rid of the Kree symbol on her suit when she changes its colours?

How to make money from a browser who sees 5 seconds into the future of any web page?

What does Apple's new App Store requirement mean

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?



Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?


How to determine the vapor pressure of a glycerine and propylene glycol mixture?Given the volumes: determine the pH and the final temperature of a mixture knowing only the initial pH and the temperature of the un-mixed componentsCan a solid and liquid be miscible?What elements and/or substances without water are liquid at room temperature?Using vapor mole fraction and pressure to determine liquid mole fractionHow could I find the solubility of hydrocarbons such as iso- and n-Butane in liquid Methane?Interpretation of miscibility curvesIs vapour pressure of a liquid solution constant at a given temperature, no matter the size of closed container and amount of liquid taken?Properties of azeotropesIs there a stable and non-toxic hydro-nitrogen-oxygen compound that's liquid in room temperature?













3












$begingroup$


This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:




  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K


This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $text{C}_n text{H}_{2n+2}$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce{ 2O2 + CH4 -> CO2 + 2H2O }$$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?










share|improve this question











$endgroup$








  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago








  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago
















3












$begingroup$


This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:




  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K


This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $text{C}_n text{H}_{2n+2}$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce{ 2O2 + CH4 -> CO2 + 2H2O }$$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?










share|improve this question











$endgroup$








  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago








  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago














3












3








3





$begingroup$


This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:




  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K


This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $text{C}_n text{H}_{2n+2}$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce{ 2O2 + CH4 -> CO2 + 2H2O }$$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?










share|improve this question











$endgroup$




This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:




  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K


This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $text{C}_n text{H}_{2n+2}$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce{ 2O2 + CH4 -> CO2 + 2H2O }$$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?







solutions mixtures fuel liquids






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 3 hours ago







uhoh

















asked 4 hours ago









uhohuhoh

1,646839




1,646839








  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago








  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago














  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago








  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago








1




1




$begingroup$
I am not sure if both the solutions and mixtures tags apply here.
$endgroup$
– uhoh
4 hours ago




$begingroup$
I am not sure if both the solutions and mixtures tags apply here.
$endgroup$
– uhoh
4 hours ago




2




2




$begingroup$
With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
$endgroup$
– Jon Custer
3 hours ago




$begingroup$
With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
$endgroup$
– Jon Custer
3 hours ago




1




1




$begingroup$
@JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
$endgroup$
– uhoh
3 hours ago






$begingroup$
@JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
$endgroup$
– uhoh
3 hours ago






2




2




$begingroup$
just trying to whip it into a nice froth for my coffee in the morning...
$endgroup$
– Jon Custer
3 hours ago




$begingroup$
just trying to whip it into a nice froth for my coffee in the morning...
$endgroup$
– Jon Custer
3 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    28 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "431"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111355%2fcan-a-stoichiometric-mixture-of-oxygen-and-methane-exist-as-a-liquid-at-standard%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    28 mins ago
















2












$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    28 mins ago














2












2








2





$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here







share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this answer



share|improve this answer








edited 7 mins ago





















New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 36 mins ago









Bob JacobsenBob Jacobsen

1212




1212




New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    28 mins ago


















  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    28 mins ago
















$begingroup$
Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
$endgroup$
– uhoh
28 mins ago




$begingroup$
Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
$endgroup$
– uhoh
28 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Chemistry Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111355%2fcan-a-stoichiometric-mixture-of-oxygen-and-methane-exist-as-a-liquid-at-standard%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

Should I use Docker or LXD?How to cache (more) data on SSD/RAM to avoid spin up?Unable to get Windows File...