Converting a text document with special format to Pandas DataFrame Announcing the arrival of...

Why is one lightbulb in a string illuminated?

Why did Israel vote against lifting the American embargo on Cuba?

How is an IPA symbol that lacks a name (e.g. ɲ) called?

Unix AIX passing variable and arguments to expect and spawn

What is the definining line between a helicopter and a drone a person can ride in?

How to ask rejected full-time candidates to apply to teach individual courses?

Providing direct feedback to a product salesperson

Trying to enter the Fox's den

Who's this lady in the war room?

A journey... into the MIND

If gravity precedes the formation of a solar system, where did the mass come from that caused the gravity?

Why aren't these two solutions equivalent? Combinatorics problem

Assertions In A Mock Callout Test

How to make an animal which can only breed for a certain number of generations?

Will the Antimagic Field spell cause elementals not summoned by magic to dissipate?

Are Flameskulls resistant to magical piercing damage?

Does traveling In The United States require a passport or can I use my green card if not a US citizen?

A German immigrant ancestor has a "Registration Affidavit of Alien Enemy" on file. What does that mean exactly?

Where is Bhagavad Gita referred to as Hari Gita?

Kepler's 3rd law: ratios don't fit data

Is there a verb for listening stealthily?

“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?

Is Bran literally the world's memory?

How was Lagrange appointed professor of mathematics so early?



Converting a text document with special format to Pandas DataFrame



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Data science time! April 2019 and salary with experience
The Ask Question Wizard is Live!How can I reverse a list in Python?Add one row to pandas DataFrameSelecting multiple columns in a pandas dataframeUse a list of values to select rows from a pandas dataframeAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrame by column nameHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasGet list from pandas DataFrame column headersConvert list of dictionaries to a pandas DataFrame





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







10















I have a text file with the following format:



1: frack 0.733, shale 0.700, 
10: space 0.645, station 0.327, nasa 0.258,
4: celebr 0.262, bahar 0.345


I need to covert this text to a DataFrame with the following format:



Id   Term    weight
1 frack 0.733
1 shale 0.700
10 space 0.645
10 station 0.327
10 nasa 0.258
4 celebr 0.262
4 bahar 0.345


How I can do it?










share|improve this question

























  • I can only think of regex helping here.

    – amanb
    10 hours ago








  • 1





    Depending on how large/long your file is, you can loop through the file without pandas to format it properly first.

    – Quang Hoang
    9 hours ago











  • It can be done with explode and split

    – Wen-Ben
    9 hours ago











  • Also , When you read the text to pandas what is the format of the df ?

    – Wen-Ben
    9 hours ago













  • The data is in text format.

    – Mary
    9 hours ago


















10















I have a text file with the following format:



1: frack 0.733, shale 0.700, 
10: space 0.645, station 0.327, nasa 0.258,
4: celebr 0.262, bahar 0.345


I need to covert this text to a DataFrame with the following format:



Id   Term    weight
1 frack 0.733
1 shale 0.700
10 space 0.645
10 station 0.327
10 nasa 0.258
4 celebr 0.262
4 bahar 0.345


How I can do it?










share|improve this question

























  • I can only think of regex helping here.

    – amanb
    10 hours ago








  • 1





    Depending on how large/long your file is, you can loop through the file without pandas to format it properly first.

    – Quang Hoang
    9 hours ago











  • It can be done with explode and split

    – Wen-Ben
    9 hours ago











  • Also , When you read the text to pandas what is the format of the df ?

    – Wen-Ben
    9 hours ago













  • The data is in text format.

    – Mary
    9 hours ago














10












10








10


5






I have a text file with the following format:



1: frack 0.733, shale 0.700, 
10: space 0.645, station 0.327, nasa 0.258,
4: celebr 0.262, bahar 0.345


I need to covert this text to a DataFrame with the following format:



Id   Term    weight
1 frack 0.733
1 shale 0.700
10 space 0.645
10 station 0.327
10 nasa 0.258
4 celebr 0.262
4 bahar 0.345


How I can do it?










share|improve this question
















I have a text file with the following format:



1: frack 0.733, shale 0.700, 
10: space 0.645, station 0.327, nasa 0.258,
4: celebr 0.262, bahar 0.345


I need to covert this text to a DataFrame with the following format:



Id   Term    weight
1 frack 0.733
1 shale 0.700
10 space 0.645
10 station 0.327
10 nasa 0.258
4 celebr 0.262
4 bahar 0.345


How I can do it?







python pandas






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 7 hours ago









Brad Solomon

15.1k83996




15.1k83996










asked 10 hours ago









MaryMary

465217




465217













  • I can only think of regex helping here.

    – amanb
    10 hours ago








  • 1





    Depending on how large/long your file is, you can loop through the file without pandas to format it properly first.

    – Quang Hoang
    9 hours ago











  • It can be done with explode and split

    – Wen-Ben
    9 hours ago











  • Also , When you read the text to pandas what is the format of the df ?

    – Wen-Ben
    9 hours ago













  • The data is in text format.

    – Mary
    9 hours ago



















  • I can only think of regex helping here.

    – amanb
    10 hours ago








  • 1





    Depending on how large/long your file is, you can loop through the file without pandas to format it properly first.

    – Quang Hoang
    9 hours ago











  • It can be done with explode and split

    – Wen-Ben
    9 hours ago











  • Also , When you read the text to pandas what is the format of the df ?

    – Wen-Ben
    9 hours ago













  • The data is in text format.

    – Mary
    9 hours ago

















I can only think of regex helping here.

– amanb
10 hours ago







I can only think of regex helping here.

– amanb
10 hours ago






1




1





Depending on how large/long your file is, you can loop through the file without pandas to format it properly first.

– Quang Hoang
9 hours ago





Depending on how large/long your file is, you can loop through the file without pandas to format it properly first.

– Quang Hoang
9 hours ago













It can be done with explode and split

– Wen-Ben
9 hours ago





It can be done with explode and split

– Wen-Ben
9 hours ago













Also , When you read the text to pandas what is the format of the df ?

– Wen-Ben
9 hours ago







Also , When you read the text to pandas what is the format of the df ?

– Wen-Ben
9 hours ago















The data is in text format.

– Mary
9 hours ago





The data is in text format.

– Mary
9 hours ago












8 Answers
8






active

oldest

votes


















10














Here's an optimized way to parse the file with re, first taking the ID and then parsing the data tuples. This takes advantage of the fact that file objects are iterable. When you iterate over an open file, you get the individual lines as strings, from which you can extract the meaningful data elements.



import re
import pandas as pd

SEP_RE = re.compile(r":s+")
DATA_RE = re.compile(r"(?P<term>[a-z]+)s+(?P<weight>d+.d+)", re.I)


def parse(filepath: str):
def _parse(filepath):
with open(filepath) as f:
for line in f:
id, rest = SEP_RE.split(line, maxsplit=1)
for match in DATA_RE.finditer(rest):
yield [int(id), match["term"], float(match["weight"])]
return list(_parse(filepath))


Example:



>>> df = pd.DataFrame(parse("/Users/bradsolomon/Downloads/doc.txt"),
... columns=["Id", "Term", "weight"])
>>>
>>> df
Id Term weight
0 1 frack 0.733
1 1 shale 0.700
2 10 space 0.645
3 10 station 0.327
4 10 nasa 0.258
5 4 celebr 0.262
6 4 bahar 0.345

>>> df.dtypes
Id int64
Term object
weight float64
dtype: object




Walkthrough



SEP_RE looks for an initial separator: a literal : followed by one or more spaces. It uses maxsplit=1 to stop once the first split is found. Granted, this assumes your data is strictly formatted: that the format of your entire dataset consistently follows the example format laid out in your question.



After that, DATA_RE.finditer() deals with each (term, weight) pair extraxted from rest. The string rest itself will look like frack 0.733, shale 0.700,. .finditer() gives you multiple match objects, where you can use ["key"] notation to access the element from a given named capture group, such as (?P<term>[a-z]+).



An easy way to visualize this is to use an example line from your file as a string:



>>> line = "1: frack 0.733, shale 0.700,n"
>>> SEP_RE.split(line, maxsplit=1)
['1', 'frack 0.733, shale 0.700,n']


Now you have the initial ID and rest of the components, which you can unpack into two identifiers.



>>> id, rest = SEP_RE.split(line, maxsplit=1)
>>> it = DATA_RE.finditer(rest)
>>> match = next(it)
>>> match
<re.Match object; span=(0, 11), match='frack 0.733'>
>>> match["term"]
'frack'
>>> match["weight"]
'0.733'


The better way to visualize it is with pdb. Give it a try if you dare ;)



Disclaimer



This is one of those questions that demands a particular type of solution that may not generalize well if you ease up restrictions on your data format.



For instance, it assumes that each each Term can only take upper or lowercase ASCII letters, nothing else. If you have other Unicode characters as identifiers, you would want to look into other re characters such as w.






share|improve this answer





















  • 3





    Brilliant answer, I must say.

    – amanb
    9 hours ago











  • @amanb Thank you!

    – Brad Solomon
    9 hours ago



















3














You can use the DataFrame constructor if you massage your input to the appropriate format. Here is one way:



import pandas as pd
from itertools import chain

text="""1: frack 0.733, shale 0.700,
10: space 0.645, station 0.327, nasa 0.258,
4: celebr 0.262, bahar 0.345 """

df = pd.DataFrame(
list(
chain.from_iterable(
map(lambda z: (y[0], *z.strip().split()), y[1].split(",")) for y in
map(lambda x: x.strip(" ,").split(":"), text.splitlines())
)
),
columns=["Id", "Term", "weight"]
)

print(df)
# Id Term weight
#0 4 frack 0.733
#1 4 shale 0.700
#2 4 space 0.645
#3 4 station 0.327
#4 4 nasa 0.258
#5 4 celebr 0.262
#6 4 bahar 0.345


Explanation



I assume that you've read your file into the string text. The first thing you want to do is strip leading/trailing commas and whitespace before splitting on :



print(list(map(lambda x: x.strip(" ,").split(":"), text.splitlines())))
#[['1', ' frack 0.733, shale 0.700'],
# ['10', ' space 0.645, station 0.327, nasa 0.258'],
# ['4', ' celebr 0.262, bahar 0.345']]


The next step is to split on the comma to separate the values, and assign the Id to each set of values:



print(
[
list(map(lambda z: (y[0], *z.strip().split()), y[1].split(","))) for y in
map(lambda x: x.strip(" ,").split(":"), text.splitlines())
]
)
#[[('1', 'frack', '0.733'), ('1', 'shale', '0.700')],
# [('10', 'space', '0.645'),
# ('10', 'station', '0.327'),
# ('10', 'nasa', '0.258')],
# [('4', 'celebr', '0.262'), ('4', 'bahar', '0.345')]]


Finally, we use itertools.chain.from_iterable to flatten this output, which can then be passed straight to the DataFrame constructor.



Note: The * tuple unpacking is a python 3 feature.






share|improve this answer

































    3














    Assuming your data (csv file) looks like given:



    df = pd.read_csv('untitled.txt', sep=': ', header=None)
    df.set_index(0, inplace=True)

    # split the `,`
    df = df[1].str.strip().str.split(',', expand=True)

    # 0 1 2 3
    #-- ------------ ------------- ---------- ---
    # 1 frack 0.733 shale 0.700
    #10 space 0.645 station 0.327 nasa 0.258
    # 4 celebr 0.262 bahar 0.345

    # stack and drop empty
    df = df.stack()
    df = df[~df.eq('')]

    # split ' '
    df = df.str.strip().str.split(' ', expand=True)

    # edit to give final expected output:

    # rename index and columns for reset_index
    df.index.names = ['Id', 'to_drop']
    df.columns = ['Term', 'weight']

    # final df
    final_df = df.reset_index().drop('to_drop', axis=1)





    share|improve this answer


























    • how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

      – Rebin
      9 hours ago






    • 1





      @Rebin add engine='python'

      – pault
      9 hours ago











    • @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

      – Quang Hoang
      9 hours ago











    • I dont know how to add engine python? what is the command?

      – Rebin
      9 hours ago






    • 1





      @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

      – pault
      9 hours ago



















    2














    Just to put my two cents in: you could write yourself a parser and feed the result into pandas:



    import pandas as pd
    from parsimonious.grammar import Grammar
    from parsimonious.nodes import NodeVisitor

    file = """1: frack 0.733, shale 0.700,
    10: space 0.645, station 0.327, nasa 0.258,
    4: celebr 0.262, bahar 0.345
    """

    grammar = Grammar(
    r"""
    expr = line+

    line = id colon pair*
    pair = term ws weight sep? ws?

    id = ~"d+"
    colon = ws? ":" ws?
    sep = ws? "," ws?

    term = ~"[a-zA-Z]+"
    weight = ~"d+(?:.d+)?"

    ws = ~"s+"
    """
    )

    tree = grammar.parse(file)

    class PandasVisitor(NodeVisitor):
    def generic_visit(self, node, visited_children):
    return visited_children or node

    def visit_pair(self, node, visited_children):
    term, _, weight, *_ = visited_children
    return (term.text, weight.text)

    def visit_line(self, node, visited_children):
    id, _, pairs = visited_children
    return [(id.text, *pair) for pair in pairs]

    def visit_expr(self, node, visited_children):
    return [item for lst in visited_children for item in lst]

    pv = PandasVisitor()
    result = pv.visit(tree)

    df = pd.DataFrame(result, columns=["Id", "Term", "weight"])
    print(df)


    This yields



       Id     Term weight
    0 1 frack 0.733
    1 1 shale 0.700
    2 10 space 0.645
    3 10 station 0.327
    4 10 nasa 0.258
    5 4 celebr 0.262
    6 4 bahar 0.345





    share|improve this answer































      0














      Here is another take for your question. Creating a list which will contain lists for every id and term. And then produce the dataframe.



      import pandas as pd
      file=r"give_your_path".replace('\', '/')
      my_list_of_lists=[]#creating an empty list which will contain lists of [Id Term Weight]
      with open(file,"r+") as f:
      for line in f.readlines():#looping every line
      my_id=[line.split(":")[0]]#storing the Id in order to use it in every term
      for term in [s.strip().split(" ") for s in line[line.find(":")+1:].split(",")[:-1]]:
      my_list_of_lists.append(my_id+term)
      df=pd.DataFrame.from_records(my_list_of_lists)#turning the lists to dataframe
      df.columns=["Id","Term","weight"]#giving columns their names





      share|improve this answer































        0














        It is possible to just use entirely pandas:



        df = pd.read_csv(StringIO(u"""1: frack 0.733, shale 0.700, 
        10: space 0.645, station 0.327, nasa 0.258,
        4: celebr 0.262, bahar 0.345 """), sep=":", header=None)

        #df:
        0 1
        0 1 frack 0.733, shale 0.700,
        1 10 space 0.645, station 0.327, nasa 0.258,
        2 4 celebr 0.262, bahar 0.345


        Turn the column 1 into a list and then expand:



        df[1] = df[1].str.split(",", expand=False)

        dfs = []
        for idx, rows in df.iterrows():
        print(rows)
        dfslice = pd.DataFrame({"Id": [rows[0]]*len(rows[1]), "terms": rows[1]})
        dfs.append(dfslice)
        newdf = pd.concat(dfs, ignore_index=True)

        # this creates newdf:
        Id terms
        0 1 frack 0.733
        1 1 shale 0.700
        2 1
        3 10 space 0.645
        4 10 station 0.327
        5 10 nasa 0.258
        6 10
        7 4 celebr 0.262
        8 4 bahar 0.345


        Now we need to str split the last line and drop empties:



        newdf["terms"] = newdf["terms"].str.strip()
        newdf = newdf.join(newdf["terms"].str.split(" ", expand=True))
        newdf.columns = ["Id", "terms", "Term", "Weights"]
        newdf = newdf.drop("terms", axis=1).dropna()


        Resulting newdf:



           Id     Term Weights
        0 1 frack 0.733
        1 1 shale 0.700
        3 10 space 0.645
        4 10 station 0.327
        5 10 nasa 0.258
        7 4 celebr 0.262
        8 4 bahar 0.345





        share|improve this answer































          0














          Could I assume that there is just 1 space before 'TERM'?



          df=pd.DataFrame(columns=['ID','Term','Weight'])
          with open('C:/random/d1','r') as readObject:
          for line in readObject:
          line=line.rstrip('n')
          tempList1=line.split(':')
          tempList2=tempList1[1]
          tempList2=tempList2.rstrip(',')
          tempList2=tempList2.split(',')
          for item in tempList2:
          e=item.split(' ')
          tempRow=[tempList1[0], e[0],e[1]]
          df.loc[len(df)]=tempRow
          print(df)





          share|improve this answer































            -3














            1) You can read row by row.



            2) Then you can separate by ':' for your index and ',' for the values



            1)



            with open('path/filename.txt','r') as filename:
            content = filename.readlines()


            2)
            content = [x.split(':') for x in content]



            This will give you the following result:



            content =[
            ['1','frack 0.733, shale 0.700,'],
            ['10', 'space 0.645, station 0.327, nasa 0.258,'],
            ['4','celebr 0.262, bahar 0.345 ']]





            share|improve this answer



















            • 3





              Your result is not the result asked for in the question.

              – GiraffeMan91
              9 hours ago












            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55799784%2fconverting-a-text-document-with-special-format-to-pandas-dataframe%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            8 Answers
            8






            active

            oldest

            votes








            8 Answers
            8






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10














            Here's an optimized way to parse the file with re, first taking the ID and then parsing the data tuples. This takes advantage of the fact that file objects are iterable. When you iterate over an open file, you get the individual lines as strings, from which you can extract the meaningful data elements.



            import re
            import pandas as pd

            SEP_RE = re.compile(r":s+")
            DATA_RE = re.compile(r"(?P<term>[a-z]+)s+(?P<weight>d+.d+)", re.I)


            def parse(filepath: str):
            def _parse(filepath):
            with open(filepath) as f:
            for line in f:
            id, rest = SEP_RE.split(line, maxsplit=1)
            for match in DATA_RE.finditer(rest):
            yield [int(id), match["term"], float(match["weight"])]
            return list(_parse(filepath))


            Example:



            >>> df = pd.DataFrame(parse("/Users/bradsolomon/Downloads/doc.txt"),
            ... columns=["Id", "Term", "weight"])
            >>>
            >>> df
            Id Term weight
            0 1 frack 0.733
            1 1 shale 0.700
            2 10 space 0.645
            3 10 station 0.327
            4 10 nasa 0.258
            5 4 celebr 0.262
            6 4 bahar 0.345

            >>> df.dtypes
            Id int64
            Term object
            weight float64
            dtype: object




            Walkthrough



            SEP_RE looks for an initial separator: a literal : followed by one or more spaces. It uses maxsplit=1 to stop once the first split is found. Granted, this assumes your data is strictly formatted: that the format of your entire dataset consistently follows the example format laid out in your question.



            After that, DATA_RE.finditer() deals with each (term, weight) pair extraxted from rest. The string rest itself will look like frack 0.733, shale 0.700,. .finditer() gives you multiple match objects, where you can use ["key"] notation to access the element from a given named capture group, such as (?P<term>[a-z]+).



            An easy way to visualize this is to use an example line from your file as a string:



            >>> line = "1: frack 0.733, shale 0.700,n"
            >>> SEP_RE.split(line, maxsplit=1)
            ['1', 'frack 0.733, shale 0.700,n']


            Now you have the initial ID and rest of the components, which you can unpack into two identifiers.



            >>> id, rest = SEP_RE.split(line, maxsplit=1)
            >>> it = DATA_RE.finditer(rest)
            >>> match = next(it)
            >>> match
            <re.Match object; span=(0, 11), match='frack 0.733'>
            >>> match["term"]
            'frack'
            >>> match["weight"]
            '0.733'


            The better way to visualize it is with pdb. Give it a try if you dare ;)



            Disclaimer



            This is one of those questions that demands a particular type of solution that may not generalize well if you ease up restrictions on your data format.



            For instance, it assumes that each each Term can only take upper or lowercase ASCII letters, nothing else. If you have other Unicode characters as identifiers, you would want to look into other re characters such as w.






            share|improve this answer





















            • 3





              Brilliant answer, I must say.

              – amanb
              9 hours ago











            • @amanb Thank you!

              – Brad Solomon
              9 hours ago
















            10














            Here's an optimized way to parse the file with re, first taking the ID and then parsing the data tuples. This takes advantage of the fact that file objects are iterable. When you iterate over an open file, you get the individual lines as strings, from which you can extract the meaningful data elements.



            import re
            import pandas as pd

            SEP_RE = re.compile(r":s+")
            DATA_RE = re.compile(r"(?P<term>[a-z]+)s+(?P<weight>d+.d+)", re.I)


            def parse(filepath: str):
            def _parse(filepath):
            with open(filepath) as f:
            for line in f:
            id, rest = SEP_RE.split(line, maxsplit=1)
            for match in DATA_RE.finditer(rest):
            yield [int(id), match["term"], float(match["weight"])]
            return list(_parse(filepath))


            Example:



            >>> df = pd.DataFrame(parse("/Users/bradsolomon/Downloads/doc.txt"),
            ... columns=["Id", "Term", "weight"])
            >>>
            >>> df
            Id Term weight
            0 1 frack 0.733
            1 1 shale 0.700
            2 10 space 0.645
            3 10 station 0.327
            4 10 nasa 0.258
            5 4 celebr 0.262
            6 4 bahar 0.345

            >>> df.dtypes
            Id int64
            Term object
            weight float64
            dtype: object




            Walkthrough



            SEP_RE looks for an initial separator: a literal : followed by one or more spaces. It uses maxsplit=1 to stop once the first split is found. Granted, this assumes your data is strictly formatted: that the format of your entire dataset consistently follows the example format laid out in your question.



            After that, DATA_RE.finditer() deals with each (term, weight) pair extraxted from rest. The string rest itself will look like frack 0.733, shale 0.700,. .finditer() gives you multiple match objects, where you can use ["key"] notation to access the element from a given named capture group, such as (?P<term>[a-z]+).



            An easy way to visualize this is to use an example line from your file as a string:



            >>> line = "1: frack 0.733, shale 0.700,n"
            >>> SEP_RE.split(line, maxsplit=1)
            ['1', 'frack 0.733, shale 0.700,n']


            Now you have the initial ID and rest of the components, which you can unpack into two identifiers.



            >>> id, rest = SEP_RE.split(line, maxsplit=1)
            >>> it = DATA_RE.finditer(rest)
            >>> match = next(it)
            >>> match
            <re.Match object; span=(0, 11), match='frack 0.733'>
            >>> match["term"]
            'frack'
            >>> match["weight"]
            '0.733'


            The better way to visualize it is with pdb. Give it a try if you dare ;)



            Disclaimer



            This is one of those questions that demands a particular type of solution that may not generalize well if you ease up restrictions on your data format.



            For instance, it assumes that each each Term can only take upper or lowercase ASCII letters, nothing else. If you have other Unicode characters as identifiers, you would want to look into other re characters such as w.






            share|improve this answer





















            • 3





              Brilliant answer, I must say.

              – amanb
              9 hours ago











            • @amanb Thank you!

              – Brad Solomon
              9 hours ago














            10












            10








            10







            Here's an optimized way to parse the file with re, first taking the ID and then parsing the data tuples. This takes advantage of the fact that file objects are iterable. When you iterate over an open file, you get the individual lines as strings, from which you can extract the meaningful data elements.



            import re
            import pandas as pd

            SEP_RE = re.compile(r":s+")
            DATA_RE = re.compile(r"(?P<term>[a-z]+)s+(?P<weight>d+.d+)", re.I)


            def parse(filepath: str):
            def _parse(filepath):
            with open(filepath) as f:
            for line in f:
            id, rest = SEP_RE.split(line, maxsplit=1)
            for match in DATA_RE.finditer(rest):
            yield [int(id), match["term"], float(match["weight"])]
            return list(_parse(filepath))


            Example:



            >>> df = pd.DataFrame(parse("/Users/bradsolomon/Downloads/doc.txt"),
            ... columns=["Id", "Term", "weight"])
            >>>
            >>> df
            Id Term weight
            0 1 frack 0.733
            1 1 shale 0.700
            2 10 space 0.645
            3 10 station 0.327
            4 10 nasa 0.258
            5 4 celebr 0.262
            6 4 bahar 0.345

            >>> df.dtypes
            Id int64
            Term object
            weight float64
            dtype: object




            Walkthrough



            SEP_RE looks for an initial separator: a literal : followed by one or more spaces. It uses maxsplit=1 to stop once the first split is found. Granted, this assumes your data is strictly formatted: that the format of your entire dataset consistently follows the example format laid out in your question.



            After that, DATA_RE.finditer() deals with each (term, weight) pair extraxted from rest. The string rest itself will look like frack 0.733, shale 0.700,. .finditer() gives you multiple match objects, where you can use ["key"] notation to access the element from a given named capture group, such as (?P<term>[a-z]+).



            An easy way to visualize this is to use an example line from your file as a string:



            >>> line = "1: frack 0.733, shale 0.700,n"
            >>> SEP_RE.split(line, maxsplit=1)
            ['1', 'frack 0.733, shale 0.700,n']


            Now you have the initial ID and rest of the components, which you can unpack into two identifiers.



            >>> id, rest = SEP_RE.split(line, maxsplit=1)
            >>> it = DATA_RE.finditer(rest)
            >>> match = next(it)
            >>> match
            <re.Match object; span=(0, 11), match='frack 0.733'>
            >>> match["term"]
            'frack'
            >>> match["weight"]
            '0.733'


            The better way to visualize it is with pdb. Give it a try if you dare ;)



            Disclaimer



            This is one of those questions that demands a particular type of solution that may not generalize well if you ease up restrictions on your data format.



            For instance, it assumes that each each Term can only take upper or lowercase ASCII letters, nothing else. If you have other Unicode characters as identifiers, you would want to look into other re characters such as w.






            share|improve this answer















            Here's an optimized way to parse the file with re, first taking the ID and then parsing the data tuples. This takes advantage of the fact that file objects are iterable. When you iterate over an open file, you get the individual lines as strings, from which you can extract the meaningful data elements.



            import re
            import pandas as pd

            SEP_RE = re.compile(r":s+")
            DATA_RE = re.compile(r"(?P<term>[a-z]+)s+(?P<weight>d+.d+)", re.I)


            def parse(filepath: str):
            def _parse(filepath):
            with open(filepath) as f:
            for line in f:
            id, rest = SEP_RE.split(line, maxsplit=1)
            for match in DATA_RE.finditer(rest):
            yield [int(id), match["term"], float(match["weight"])]
            return list(_parse(filepath))


            Example:



            >>> df = pd.DataFrame(parse("/Users/bradsolomon/Downloads/doc.txt"),
            ... columns=["Id", "Term", "weight"])
            >>>
            >>> df
            Id Term weight
            0 1 frack 0.733
            1 1 shale 0.700
            2 10 space 0.645
            3 10 station 0.327
            4 10 nasa 0.258
            5 4 celebr 0.262
            6 4 bahar 0.345

            >>> df.dtypes
            Id int64
            Term object
            weight float64
            dtype: object




            Walkthrough



            SEP_RE looks for an initial separator: a literal : followed by one or more spaces. It uses maxsplit=1 to stop once the first split is found. Granted, this assumes your data is strictly formatted: that the format of your entire dataset consistently follows the example format laid out in your question.



            After that, DATA_RE.finditer() deals with each (term, weight) pair extraxted from rest. The string rest itself will look like frack 0.733, shale 0.700,. .finditer() gives you multiple match objects, where you can use ["key"] notation to access the element from a given named capture group, such as (?P<term>[a-z]+).



            An easy way to visualize this is to use an example line from your file as a string:



            >>> line = "1: frack 0.733, shale 0.700,n"
            >>> SEP_RE.split(line, maxsplit=1)
            ['1', 'frack 0.733, shale 0.700,n']


            Now you have the initial ID and rest of the components, which you can unpack into two identifiers.



            >>> id, rest = SEP_RE.split(line, maxsplit=1)
            >>> it = DATA_RE.finditer(rest)
            >>> match = next(it)
            >>> match
            <re.Match object; span=(0, 11), match='frack 0.733'>
            >>> match["term"]
            'frack'
            >>> match["weight"]
            '0.733'


            The better way to visualize it is with pdb. Give it a try if you dare ;)



            Disclaimer



            This is one of those questions that demands a particular type of solution that may not generalize well if you ease up restrictions on your data format.



            For instance, it assumes that each each Term can only take upper or lowercase ASCII letters, nothing else. If you have other Unicode characters as identifiers, you would want to look into other re characters such as w.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 3 hours ago

























            answered 9 hours ago









            Brad SolomonBrad Solomon

            15.1k83996




            15.1k83996








            • 3





              Brilliant answer, I must say.

              – amanb
              9 hours ago











            • @amanb Thank you!

              – Brad Solomon
              9 hours ago














            • 3





              Brilliant answer, I must say.

              – amanb
              9 hours ago











            • @amanb Thank you!

              – Brad Solomon
              9 hours ago








            3




            3





            Brilliant answer, I must say.

            – amanb
            9 hours ago





            Brilliant answer, I must say.

            – amanb
            9 hours ago













            @amanb Thank you!

            – Brad Solomon
            9 hours ago





            @amanb Thank you!

            – Brad Solomon
            9 hours ago













            3














            You can use the DataFrame constructor if you massage your input to the appropriate format. Here is one way:



            import pandas as pd
            from itertools import chain

            text="""1: frack 0.733, shale 0.700,
            10: space 0.645, station 0.327, nasa 0.258,
            4: celebr 0.262, bahar 0.345 """

            df = pd.DataFrame(
            list(
            chain.from_iterable(
            map(lambda z: (y[0], *z.strip().split()), y[1].split(",")) for y in
            map(lambda x: x.strip(" ,").split(":"), text.splitlines())
            )
            ),
            columns=["Id", "Term", "weight"]
            )

            print(df)
            # Id Term weight
            #0 4 frack 0.733
            #1 4 shale 0.700
            #2 4 space 0.645
            #3 4 station 0.327
            #4 4 nasa 0.258
            #5 4 celebr 0.262
            #6 4 bahar 0.345


            Explanation



            I assume that you've read your file into the string text. The first thing you want to do is strip leading/trailing commas and whitespace before splitting on :



            print(list(map(lambda x: x.strip(" ,").split(":"), text.splitlines())))
            #[['1', ' frack 0.733, shale 0.700'],
            # ['10', ' space 0.645, station 0.327, nasa 0.258'],
            # ['4', ' celebr 0.262, bahar 0.345']]


            The next step is to split on the comma to separate the values, and assign the Id to each set of values:



            print(
            [
            list(map(lambda z: (y[0], *z.strip().split()), y[1].split(","))) for y in
            map(lambda x: x.strip(" ,").split(":"), text.splitlines())
            ]
            )
            #[[('1', 'frack', '0.733'), ('1', 'shale', '0.700')],
            # [('10', 'space', '0.645'),
            # ('10', 'station', '0.327'),
            # ('10', 'nasa', '0.258')],
            # [('4', 'celebr', '0.262'), ('4', 'bahar', '0.345')]]


            Finally, we use itertools.chain.from_iterable to flatten this output, which can then be passed straight to the DataFrame constructor.



            Note: The * tuple unpacking is a python 3 feature.






            share|improve this answer






























              3














              You can use the DataFrame constructor if you massage your input to the appropriate format. Here is one way:



              import pandas as pd
              from itertools import chain

              text="""1: frack 0.733, shale 0.700,
              10: space 0.645, station 0.327, nasa 0.258,
              4: celebr 0.262, bahar 0.345 """

              df = pd.DataFrame(
              list(
              chain.from_iterable(
              map(lambda z: (y[0], *z.strip().split()), y[1].split(",")) for y in
              map(lambda x: x.strip(" ,").split(":"), text.splitlines())
              )
              ),
              columns=["Id", "Term", "weight"]
              )

              print(df)
              # Id Term weight
              #0 4 frack 0.733
              #1 4 shale 0.700
              #2 4 space 0.645
              #3 4 station 0.327
              #4 4 nasa 0.258
              #5 4 celebr 0.262
              #6 4 bahar 0.345


              Explanation



              I assume that you've read your file into the string text. The first thing you want to do is strip leading/trailing commas and whitespace before splitting on :



              print(list(map(lambda x: x.strip(" ,").split(":"), text.splitlines())))
              #[['1', ' frack 0.733, shale 0.700'],
              # ['10', ' space 0.645, station 0.327, nasa 0.258'],
              # ['4', ' celebr 0.262, bahar 0.345']]


              The next step is to split on the comma to separate the values, and assign the Id to each set of values:



              print(
              [
              list(map(lambda z: (y[0], *z.strip().split()), y[1].split(","))) for y in
              map(lambda x: x.strip(" ,").split(":"), text.splitlines())
              ]
              )
              #[[('1', 'frack', '0.733'), ('1', 'shale', '0.700')],
              # [('10', 'space', '0.645'),
              # ('10', 'station', '0.327'),
              # ('10', 'nasa', '0.258')],
              # [('4', 'celebr', '0.262'), ('4', 'bahar', '0.345')]]


              Finally, we use itertools.chain.from_iterable to flatten this output, which can then be passed straight to the DataFrame constructor.



              Note: The * tuple unpacking is a python 3 feature.






              share|improve this answer




























                3












                3








                3







                You can use the DataFrame constructor if you massage your input to the appropriate format. Here is one way:



                import pandas as pd
                from itertools import chain

                text="""1: frack 0.733, shale 0.700,
                10: space 0.645, station 0.327, nasa 0.258,
                4: celebr 0.262, bahar 0.345 """

                df = pd.DataFrame(
                list(
                chain.from_iterable(
                map(lambda z: (y[0], *z.strip().split()), y[1].split(",")) for y in
                map(lambda x: x.strip(" ,").split(":"), text.splitlines())
                )
                ),
                columns=["Id", "Term", "weight"]
                )

                print(df)
                # Id Term weight
                #0 4 frack 0.733
                #1 4 shale 0.700
                #2 4 space 0.645
                #3 4 station 0.327
                #4 4 nasa 0.258
                #5 4 celebr 0.262
                #6 4 bahar 0.345


                Explanation



                I assume that you've read your file into the string text. The first thing you want to do is strip leading/trailing commas and whitespace before splitting on :



                print(list(map(lambda x: x.strip(" ,").split(":"), text.splitlines())))
                #[['1', ' frack 0.733, shale 0.700'],
                # ['10', ' space 0.645, station 0.327, nasa 0.258'],
                # ['4', ' celebr 0.262, bahar 0.345']]


                The next step is to split on the comma to separate the values, and assign the Id to each set of values:



                print(
                [
                list(map(lambda z: (y[0], *z.strip().split()), y[1].split(","))) for y in
                map(lambda x: x.strip(" ,").split(":"), text.splitlines())
                ]
                )
                #[[('1', 'frack', '0.733'), ('1', 'shale', '0.700')],
                # [('10', 'space', '0.645'),
                # ('10', 'station', '0.327'),
                # ('10', 'nasa', '0.258')],
                # [('4', 'celebr', '0.262'), ('4', 'bahar', '0.345')]]


                Finally, we use itertools.chain.from_iterable to flatten this output, which can then be passed straight to the DataFrame constructor.



                Note: The * tuple unpacking is a python 3 feature.






                share|improve this answer















                You can use the DataFrame constructor if you massage your input to the appropriate format. Here is one way:



                import pandas as pd
                from itertools import chain

                text="""1: frack 0.733, shale 0.700,
                10: space 0.645, station 0.327, nasa 0.258,
                4: celebr 0.262, bahar 0.345 """

                df = pd.DataFrame(
                list(
                chain.from_iterable(
                map(lambda z: (y[0], *z.strip().split()), y[1].split(",")) for y in
                map(lambda x: x.strip(" ,").split(":"), text.splitlines())
                )
                ),
                columns=["Id", "Term", "weight"]
                )

                print(df)
                # Id Term weight
                #0 4 frack 0.733
                #1 4 shale 0.700
                #2 4 space 0.645
                #3 4 station 0.327
                #4 4 nasa 0.258
                #5 4 celebr 0.262
                #6 4 bahar 0.345


                Explanation



                I assume that you've read your file into the string text. The first thing you want to do is strip leading/trailing commas and whitespace before splitting on :



                print(list(map(lambda x: x.strip(" ,").split(":"), text.splitlines())))
                #[['1', ' frack 0.733, shale 0.700'],
                # ['10', ' space 0.645, station 0.327, nasa 0.258'],
                # ['4', ' celebr 0.262, bahar 0.345']]


                The next step is to split on the comma to separate the values, and assign the Id to each set of values:



                print(
                [
                list(map(lambda z: (y[0], *z.strip().split()), y[1].split(","))) for y in
                map(lambda x: x.strip(" ,").split(":"), text.splitlines())
                ]
                )
                #[[('1', 'frack', '0.733'), ('1', 'shale', '0.700')],
                # [('10', 'space', '0.645'),
                # ('10', 'station', '0.327'),
                # ('10', 'nasa', '0.258')],
                # [('4', 'celebr', '0.262'), ('4', 'bahar', '0.345')]]


                Finally, we use itertools.chain.from_iterable to flatten this output, which can then be passed straight to the DataFrame constructor.



                Note: The * tuple unpacking is a python 3 feature.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 9 hours ago

























                answered 9 hours ago









                paultpault

                17.3k42754




                17.3k42754























                    3














                    Assuming your data (csv file) looks like given:



                    df = pd.read_csv('untitled.txt', sep=': ', header=None)
                    df.set_index(0, inplace=True)

                    # split the `,`
                    df = df[1].str.strip().str.split(',', expand=True)

                    # 0 1 2 3
                    #-- ------------ ------------- ---------- ---
                    # 1 frack 0.733 shale 0.700
                    #10 space 0.645 station 0.327 nasa 0.258
                    # 4 celebr 0.262 bahar 0.345

                    # stack and drop empty
                    df = df.stack()
                    df = df[~df.eq('')]

                    # split ' '
                    df = df.str.strip().str.split(' ', expand=True)

                    # edit to give final expected output:

                    # rename index and columns for reset_index
                    df.index.names = ['Id', 'to_drop']
                    df.columns = ['Term', 'weight']

                    # final df
                    final_df = df.reset_index().drop('to_drop', axis=1)





                    share|improve this answer


























                    • how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add engine='python'

                      – pault
                      9 hours ago











                    • @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

                      – Quang Hoang
                      9 hours ago











                    • I dont know how to add engine python? what is the command?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

                      – pault
                      9 hours ago
















                    3














                    Assuming your data (csv file) looks like given:



                    df = pd.read_csv('untitled.txt', sep=': ', header=None)
                    df.set_index(0, inplace=True)

                    # split the `,`
                    df = df[1].str.strip().str.split(',', expand=True)

                    # 0 1 2 3
                    #-- ------------ ------------- ---------- ---
                    # 1 frack 0.733 shale 0.700
                    #10 space 0.645 station 0.327 nasa 0.258
                    # 4 celebr 0.262 bahar 0.345

                    # stack and drop empty
                    df = df.stack()
                    df = df[~df.eq('')]

                    # split ' '
                    df = df.str.strip().str.split(' ', expand=True)

                    # edit to give final expected output:

                    # rename index and columns for reset_index
                    df.index.names = ['Id', 'to_drop']
                    df.columns = ['Term', 'weight']

                    # final df
                    final_df = df.reset_index().drop('to_drop', axis=1)





                    share|improve this answer


























                    • how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add engine='python'

                      – pault
                      9 hours ago











                    • @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

                      – Quang Hoang
                      9 hours ago











                    • I dont know how to add engine python? what is the command?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

                      – pault
                      9 hours ago














                    3












                    3








                    3







                    Assuming your data (csv file) looks like given:



                    df = pd.read_csv('untitled.txt', sep=': ', header=None)
                    df.set_index(0, inplace=True)

                    # split the `,`
                    df = df[1].str.strip().str.split(',', expand=True)

                    # 0 1 2 3
                    #-- ------------ ------------- ---------- ---
                    # 1 frack 0.733 shale 0.700
                    #10 space 0.645 station 0.327 nasa 0.258
                    # 4 celebr 0.262 bahar 0.345

                    # stack and drop empty
                    df = df.stack()
                    df = df[~df.eq('')]

                    # split ' '
                    df = df.str.strip().str.split(' ', expand=True)

                    # edit to give final expected output:

                    # rename index and columns for reset_index
                    df.index.names = ['Id', 'to_drop']
                    df.columns = ['Term', 'weight']

                    # final df
                    final_df = df.reset_index().drop('to_drop', axis=1)





                    share|improve this answer















                    Assuming your data (csv file) looks like given:



                    df = pd.read_csv('untitled.txt', sep=': ', header=None)
                    df.set_index(0, inplace=True)

                    # split the `,`
                    df = df[1].str.strip().str.split(',', expand=True)

                    # 0 1 2 3
                    #-- ------------ ------------- ---------- ---
                    # 1 frack 0.733 shale 0.700
                    #10 space 0.645 station 0.327 nasa 0.258
                    # 4 celebr 0.262 bahar 0.345

                    # stack and drop empty
                    df = df.stack()
                    df = df[~df.eq('')]

                    # split ' '
                    df = df.str.strip().str.split(' ', expand=True)

                    # edit to give final expected output:

                    # rename index and columns for reset_index
                    df.index.names = ['Id', 'to_drop']
                    df.columns = ['Term', 'weight']

                    # final df
                    final_df = df.reset_index().drop('to_drop', axis=1)






                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 9 hours ago

























                    answered 9 hours ago









                    Quang HoangQuang Hoang

                    3,83211020




                    3,83211020













                    • how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add engine='python'

                      – pault
                      9 hours ago











                    • @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

                      – Quang Hoang
                      9 hours ago











                    • I dont know how to add engine python? what is the command?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

                      – pault
                      9 hours ago



















                    • how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add engine='python'

                      – pault
                      9 hours ago











                    • @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

                      – Quang Hoang
                      9 hours ago











                    • I dont know how to add engine python? what is the command?

                      – Rebin
                      9 hours ago






                    • 1





                      @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

                      – pault
                      9 hours ago

















                    how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

                    – Rebin
                    9 hours ago





                    how do you not getting error by ''' sep=': ' ''' which is 2 character separator?

                    – Rebin
                    9 hours ago




                    1




                    1





                    @Rebin add engine='python'

                    – pault
                    9 hours ago





                    @Rebin add engine='python'

                    – pault
                    9 hours ago













                    @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

                    – Quang Hoang
                    9 hours ago





                    @pault weird, 'cause I already split by ' '. It yields correct data on my computer.

                    – Quang Hoang
                    9 hours ago













                    I dont know how to add engine python? what is the command?

                    – Rebin
                    9 hours ago





                    I dont know how to add engine python? what is the command?

                    – Rebin
                    9 hours ago




                    1




                    1





                    @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

                    – pault
                    9 hours ago





                    @Rebin add it as a param to pd.read_csv - df = pd.read_csv(..., engine='python')

                    – pault
                    9 hours ago











                    2














                    Just to put my two cents in: you could write yourself a parser and feed the result into pandas:



                    import pandas as pd
                    from parsimonious.grammar import Grammar
                    from parsimonious.nodes import NodeVisitor

                    file = """1: frack 0.733, shale 0.700,
                    10: space 0.645, station 0.327, nasa 0.258,
                    4: celebr 0.262, bahar 0.345
                    """

                    grammar = Grammar(
                    r"""
                    expr = line+

                    line = id colon pair*
                    pair = term ws weight sep? ws?

                    id = ~"d+"
                    colon = ws? ":" ws?
                    sep = ws? "," ws?

                    term = ~"[a-zA-Z]+"
                    weight = ~"d+(?:.d+)?"

                    ws = ~"s+"
                    """
                    )

                    tree = grammar.parse(file)

                    class PandasVisitor(NodeVisitor):
                    def generic_visit(self, node, visited_children):
                    return visited_children or node

                    def visit_pair(self, node, visited_children):
                    term, _, weight, *_ = visited_children
                    return (term.text, weight.text)

                    def visit_line(self, node, visited_children):
                    id, _, pairs = visited_children
                    return [(id.text, *pair) for pair in pairs]

                    def visit_expr(self, node, visited_children):
                    return [item for lst in visited_children for item in lst]

                    pv = PandasVisitor()
                    result = pv.visit(tree)

                    df = pd.DataFrame(result, columns=["Id", "Term", "weight"])
                    print(df)


                    This yields



                       Id     Term weight
                    0 1 frack 0.733
                    1 1 shale 0.700
                    2 10 space 0.645
                    3 10 station 0.327
                    4 10 nasa 0.258
                    5 4 celebr 0.262
                    6 4 bahar 0.345





                    share|improve this answer




























                      2














                      Just to put my two cents in: you could write yourself a parser and feed the result into pandas:



                      import pandas as pd
                      from parsimonious.grammar import Grammar
                      from parsimonious.nodes import NodeVisitor

                      file = """1: frack 0.733, shale 0.700,
                      10: space 0.645, station 0.327, nasa 0.258,
                      4: celebr 0.262, bahar 0.345
                      """

                      grammar = Grammar(
                      r"""
                      expr = line+

                      line = id colon pair*
                      pair = term ws weight sep? ws?

                      id = ~"d+"
                      colon = ws? ":" ws?
                      sep = ws? "," ws?

                      term = ~"[a-zA-Z]+"
                      weight = ~"d+(?:.d+)?"

                      ws = ~"s+"
                      """
                      )

                      tree = grammar.parse(file)

                      class PandasVisitor(NodeVisitor):
                      def generic_visit(self, node, visited_children):
                      return visited_children or node

                      def visit_pair(self, node, visited_children):
                      term, _, weight, *_ = visited_children
                      return (term.text, weight.text)

                      def visit_line(self, node, visited_children):
                      id, _, pairs = visited_children
                      return [(id.text, *pair) for pair in pairs]

                      def visit_expr(self, node, visited_children):
                      return [item for lst in visited_children for item in lst]

                      pv = PandasVisitor()
                      result = pv.visit(tree)

                      df = pd.DataFrame(result, columns=["Id", "Term", "weight"])
                      print(df)


                      This yields



                         Id     Term weight
                      0 1 frack 0.733
                      1 1 shale 0.700
                      2 10 space 0.645
                      3 10 station 0.327
                      4 10 nasa 0.258
                      5 4 celebr 0.262
                      6 4 bahar 0.345





                      share|improve this answer


























                        2












                        2








                        2







                        Just to put my two cents in: you could write yourself a parser and feed the result into pandas:



                        import pandas as pd
                        from parsimonious.grammar import Grammar
                        from parsimonious.nodes import NodeVisitor

                        file = """1: frack 0.733, shale 0.700,
                        10: space 0.645, station 0.327, nasa 0.258,
                        4: celebr 0.262, bahar 0.345
                        """

                        grammar = Grammar(
                        r"""
                        expr = line+

                        line = id colon pair*
                        pair = term ws weight sep? ws?

                        id = ~"d+"
                        colon = ws? ":" ws?
                        sep = ws? "," ws?

                        term = ~"[a-zA-Z]+"
                        weight = ~"d+(?:.d+)?"

                        ws = ~"s+"
                        """
                        )

                        tree = grammar.parse(file)

                        class PandasVisitor(NodeVisitor):
                        def generic_visit(self, node, visited_children):
                        return visited_children or node

                        def visit_pair(self, node, visited_children):
                        term, _, weight, *_ = visited_children
                        return (term.text, weight.text)

                        def visit_line(self, node, visited_children):
                        id, _, pairs = visited_children
                        return [(id.text, *pair) for pair in pairs]

                        def visit_expr(self, node, visited_children):
                        return [item for lst in visited_children for item in lst]

                        pv = PandasVisitor()
                        result = pv.visit(tree)

                        df = pd.DataFrame(result, columns=["Id", "Term", "weight"])
                        print(df)


                        This yields



                           Id     Term weight
                        0 1 frack 0.733
                        1 1 shale 0.700
                        2 10 space 0.645
                        3 10 station 0.327
                        4 10 nasa 0.258
                        5 4 celebr 0.262
                        6 4 bahar 0.345





                        share|improve this answer













                        Just to put my two cents in: you could write yourself a parser and feed the result into pandas:



                        import pandas as pd
                        from parsimonious.grammar import Grammar
                        from parsimonious.nodes import NodeVisitor

                        file = """1: frack 0.733, shale 0.700,
                        10: space 0.645, station 0.327, nasa 0.258,
                        4: celebr 0.262, bahar 0.345
                        """

                        grammar = Grammar(
                        r"""
                        expr = line+

                        line = id colon pair*
                        pair = term ws weight sep? ws?

                        id = ~"d+"
                        colon = ws? ":" ws?
                        sep = ws? "," ws?

                        term = ~"[a-zA-Z]+"
                        weight = ~"d+(?:.d+)?"

                        ws = ~"s+"
                        """
                        )

                        tree = grammar.parse(file)

                        class PandasVisitor(NodeVisitor):
                        def generic_visit(self, node, visited_children):
                        return visited_children or node

                        def visit_pair(self, node, visited_children):
                        term, _, weight, *_ = visited_children
                        return (term.text, weight.text)

                        def visit_line(self, node, visited_children):
                        id, _, pairs = visited_children
                        return [(id.text, *pair) for pair in pairs]

                        def visit_expr(self, node, visited_children):
                        return [item for lst in visited_children for item in lst]

                        pv = PandasVisitor()
                        result = pv.visit(tree)

                        df = pd.DataFrame(result, columns=["Id", "Term", "weight"])
                        print(df)


                        This yields



                           Id     Term weight
                        0 1 frack 0.733
                        1 1 shale 0.700
                        2 10 space 0.645
                        3 10 station 0.327
                        4 10 nasa 0.258
                        5 4 celebr 0.262
                        6 4 bahar 0.345






                        share|improve this answer












                        share|improve this answer



                        share|improve this answer










                        answered 8 hours ago









                        JanJan

                        26.1k52750




                        26.1k52750























                            0














                            Here is another take for your question. Creating a list which will contain lists for every id and term. And then produce the dataframe.



                            import pandas as pd
                            file=r"give_your_path".replace('\', '/')
                            my_list_of_lists=[]#creating an empty list which will contain lists of [Id Term Weight]
                            with open(file,"r+") as f:
                            for line in f.readlines():#looping every line
                            my_id=[line.split(":")[0]]#storing the Id in order to use it in every term
                            for term in [s.strip().split(" ") for s in line[line.find(":")+1:].split(",")[:-1]]:
                            my_list_of_lists.append(my_id+term)
                            df=pd.DataFrame.from_records(my_list_of_lists)#turning the lists to dataframe
                            df.columns=["Id","Term","weight"]#giving columns their names





                            share|improve this answer




























                              0














                              Here is another take for your question. Creating a list which will contain lists for every id and term. And then produce the dataframe.



                              import pandas as pd
                              file=r"give_your_path".replace('\', '/')
                              my_list_of_lists=[]#creating an empty list which will contain lists of [Id Term Weight]
                              with open(file,"r+") as f:
                              for line in f.readlines():#looping every line
                              my_id=[line.split(":")[0]]#storing the Id in order to use it in every term
                              for term in [s.strip().split(" ") for s in line[line.find(":")+1:].split(",")[:-1]]:
                              my_list_of_lists.append(my_id+term)
                              df=pd.DataFrame.from_records(my_list_of_lists)#turning the lists to dataframe
                              df.columns=["Id","Term","weight"]#giving columns their names





                              share|improve this answer


























                                0












                                0








                                0







                                Here is another take for your question. Creating a list which will contain lists for every id and term. And then produce the dataframe.



                                import pandas as pd
                                file=r"give_your_path".replace('\', '/')
                                my_list_of_lists=[]#creating an empty list which will contain lists of [Id Term Weight]
                                with open(file,"r+") as f:
                                for line in f.readlines():#looping every line
                                my_id=[line.split(":")[0]]#storing the Id in order to use it in every term
                                for term in [s.strip().split(" ") for s in line[line.find(":")+1:].split(",")[:-1]]:
                                my_list_of_lists.append(my_id+term)
                                df=pd.DataFrame.from_records(my_list_of_lists)#turning the lists to dataframe
                                df.columns=["Id","Term","weight"]#giving columns their names





                                share|improve this answer













                                Here is another take for your question. Creating a list which will contain lists for every id and term. And then produce the dataframe.



                                import pandas as pd
                                file=r"give_your_path".replace('\', '/')
                                my_list_of_lists=[]#creating an empty list which will contain lists of [Id Term Weight]
                                with open(file,"r+") as f:
                                for line in f.readlines():#looping every line
                                my_id=[line.split(":")[0]]#storing the Id in order to use it in every term
                                for term in [s.strip().split(" ") for s in line[line.find(":")+1:].split(",")[:-1]]:
                                my_list_of_lists.append(my_id+term)
                                df=pd.DataFrame.from_records(my_list_of_lists)#turning the lists to dataframe
                                df.columns=["Id","Term","weight"]#giving columns their names






                                share|improve this answer












                                share|improve this answer



                                share|improve this answer










                                answered 9 hours ago









                                JoPapou13JoPapou13

                                914




                                914























                                    0














                                    It is possible to just use entirely pandas:



                                    df = pd.read_csv(StringIO(u"""1: frack 0.733, shale 0.700, 
                                    10: space 0.645, station 0.327, nasa 0.258,
                                    4: celebr 0.262, bahar 0.345 """), sep=":", header=None)

                                    #df:
                                    0 1
                                    0 1 frack 0.733, shale 0.700,
                                    1 10 space 0.645, station 0.327, nasa 0.258,
                                    2 4 celebr 0.262, bahar 0.345


                                    Turn the column 1 into a list and then expand:



                                    df[1] = df[1].str.split(",", expand=False)

                                    dfs = []
                                    for idx, rows in df.iterrows():
                                    print(rows)
                                    dfslice = pd.DataFrame({"Id": [rows[0]]*len(rows[1]), "terms": rows[1]})
                                    dfs.append(dfslice)
                                    newdf = pd.concat(dfs, ignore_index=True)

                                    # this creates newdf:
                                    Id terms
                                    0 1 frack 0.733
                                    1 1 shale 0.700
                                    2 1
                                    3 10 space 0.645
                                    4 10 station 0.327
                                    5 10 nasa 0.258
                                    6 10
                                    7 4 celebr 0.262
                                    8 4 bahar 0.345


                                    Now we need to str split the last line and drop empties:



                                    newdf["terms"] = newdf["terms"].str.strip()
                                    newdf = newdf.join(newdf["terms"].str.split(" ", expand=True))
                                    newdf.columns = ["Id", "terms", "Term", "Weights"]
                                    newdf = newdf.drop("terms", axis=1).dropna()


                                    Resulting newdf:



                                       Id     Term Weights
                                    0 1 frack 0.733
                                    1 1 shale 0.700
                                    3 10 space 0.645
                                    4 10 station 0.327
                                    5 10 nasa 0.258
                                    7 4 celebr 0.262
                                    8 4 bahar 0.345





                                    share|improve this answer




























                                      0














                                      It is possible to just use entirely pandas:



                                      df = pd.read_csv(StringIO(u"""1: frack 0.733, shale 0.700, 
                                      10: space 0.645, station 0.327, nasa 0.258,
                                      4: celebr 0.262, bahar 0.345 """), sep=":", header=None)

                                      #df:
                                      0 1
                                      0 1 frack 0.733, shale 0.700,
                                      1 10 space 0.645, station 0.327, nasa 0.258,
                                      2 4 celebr 0.262, bahar 0.345


                                      Turn the column 1 into a list and then expand:



                                      df[1] = df[1].str.split(",", expand=False)

                                      dfs = []
                                      for idx, rows in df.iterrows():
                                      print(rows)
                                      dfslice = pd.DataFrame({"Id": [rows[0]]*len(rows[1]), "terms": rows[1]})
                                      dfs.append(dfslice)
                                      newdf = pd.concat(dfs, ignore_index=True)

                                      # this creates newdf:
                                      Id terms
                                      0 1 frack 0.733
                                      1 1 shale 0.700
                                      2 1
                                      3 10 space 0.645
                                      4 10 station 0.327
                                      5 10 nasa 0.258
                                      6 10
                                      7 4 celebr 0.262
                                      8 4 bahar 0.345


                                      Now we need to str split the last line and drop empties:



                                      newdf["terms"] = newdf["terms"].str.strip()
                                      newdf = newdf.join(newdf["terms"].str.split(" ", expand=True))
                                      newdf.columns = ["Id", "terms", "Term", "Weights"]
                                      newdf = newdf.drop("terms", axis=1).dropna()


                                      Resulting newdf:



                                         Id     Term Weights
                                      0 1 frack 0.733
                                      1 1 shale 0.700
                                      3 10 space 0.645
                                      4 10 station 0.327
                                      5 10 nasa 0.258
                                      7 4 celebr 0.262
                                      8 4 bahar 0.345





                                      share|improve this answer


























                                        0












                                        0








                                        0







                                        It is possible to just use entirely pandas:



                                        df = pd.read_csv(StringIO(u"""1: frack 0.733, shale 0.700, 
                                        10: space 0.645, station 0.327, nasa 0.258,
                                        4: celebr 0.262, bahar 0.345 """), sep=":", header=None)

                                        #df:
                                        0 1
                                        0 1 frack 0.733, shale 0.700,
                                        1 10 space 0.645, station 0.327, nasa 0.258,
                                        2 4 celebr 0.262, bahar 0.345


                                        Turn the column 1 into a list and then expand:



                                        df[1] = df[1].str.split(",", expand=False)

                                        dfs = []
                                        for idx, rows in df.iterrows():
                                        print(rows)
                                        dfslice = pd.DataFrame({"Id": [rows[0]]*len(rows[1]), "terms": rows[1]})
                                        dfs.append(dfslice)
                                        newdf = pd.concat(dfs, ignore_index=True)

                                        # this creates newdf:
                                        Id terms
                                        0 1 frack 0.733
                                        1 1 shale 0.700
                                        2 1
                                        3 10 space 0.645
                                        4 10 station 0.327
                                        5 10 nasa 0.258
                                        6 10
                                        7 4 celebr 0.262
                                        8 4 bahar 0.345


                                        Now we need to str split the last line and drop empties:



                                        newdf["terms"] = newdf["terms"].str.strip()
                                        newdf = newdf.join(newdf["terms"].str.split(" ", expand=True))
                                        newdf.columns = ["Id", "terms", "Term", "Weights"]
                                        newdf = newdf.drop("terms", axis=1).dropna()


                                        Resulting newdf:



                                           Id     Term Weights
                                        0 1 frack 0.733
                                        1 1 shale 0.700
                                        3 10 space 0.645
                                        4 10 station 0.327
                                        5 10 nasa 0.258
                                        7 4 celebr 0.262
                                        8 4 bahar 0.345





                                        share|improve this answer













                                        It is possible to just use entirely pandas:



                                        df = pd.read_csv(StringIO(u"""1: frack 0.733, shale 0.700, 
                                        10: space 0.645, station 0.327, nasa 0.258,
                                        4: celebr 0.262, bahar 0.345 """), sep=":", header=None)

                                        #df:
                                        0 1
                                        0 1 frack 0.733, shale 0.700,
                                        1 10 space 0.645, station 0.327, nasa 0.258,
                                        2 4 celebr 0.262, bahar 0.345


                                        Turn the column 1 into a list and then expand:



                                        df[1] = df[1].str.split(",", expand=False)

                                        dfs = []
                                        for idx, rows in df.iterrows():
                                        print(rows)
                                        dfslice = pd.DataFrame({"Id": [rows[0]]*len(rows[1]), "terms": rows[1]})
                                        dfs.append(dfslice)
                                        newdf = pd.concat(dfs, ignore_index=True)

                                        # this creates newdf:
                                        Id terms
                                        0 1 frack 0.733
                                        1 1 shale 0.700
                                        2 1
                                        3 10 space 0.645
                                        4 10 station 0.327
                                        5 10 nasa 0.258
                                        6 10
                                        7 4 celebr 0.262
                                        8 4 bahar 0.345


                                        Now we need to str split the last line and drop empties:



                                        newdf["terms"] = newdf["terms"].str.strip()
                                        newdf = newdf.join(newdf["terms"].str.split(" ", expand=True))
                                        newdf.columns = ["Id", "terms", "Term", "Weights"]
                                        newdf = newdf.drop("terms", axis=1).dropna()


                                        Resulting newdf:



                                           Id     Term Weights
                                        0 1 frack 0.733
                                        1 1 shale 0.700
                                        3 10 space 0.645
                                        4 10 station 0.327
                                        5 10 nasa 0.258
                                        7 4 celebr 0.262
                                        8 4 bahar 0.345






                                        share|improve this answer












                                        share|improve this answer



                                        share|improve this answer










                                        answered 9 hours ago









                                        Rocky LiRocky Li

                                        3,6831719




                                        3,6831719























                                            0














                                            Could I assume that there is just 1 space before 'TERM'?



                                            df=pd.DataFrame(columns=['ID','Term','Weight'])
                                            with open('C:/random/d1','r') as readObject:
                                            for line in readObject:
                                            line=line.rstrip('n')
                                            tempList1=line.split(':')
                                            tempList2=tempList1[1]
                                            tempList2=tempList2.rstrip(',')
                                            tempList2=tempList2.split(',')
                                            for item in tempList2:
                                            e=item.split(' ')
                                            tempRow=[tempList1[0], e[0],e[1]]
                                            df.loc[len(df)]=tempRow
                                            print(df)





                                            share|improve this answer




























                                              0














                                              Could I assume that there is just 1 space before 'TERM'?



                                              df=pd.DataFrame(columns=['ID','Term','Weight'])
                                              with open('C:/random/d1','r') as readObject:
                                              for line in readObject:
                                              line=line.rstrip('n')
                                              tempList1=line.split(':')
                                              tempList2=tempList1[1]
                                              tempList2=tempList2.rstrip(',')
                                              tempList2=tempList2.split(',')
                                              for item in tempList2:
                                              e=item.split(' ')
                                              tempRow=[tempList1[0], e[0],e[1]]
                                              df.loc[len(df)]=tempRow
                                              print(df)





                                              share|improve this answer


























                                                0












                                                0








                                                0







                                                Could I assume that there is just 1 space before 'TERM'?



                                                df=pd.DataFrame(columns=['ID','Term','Weight'])
                                                with open('C:/random/d1','r') as readObject:
                                                for line in readObject:
                                                line=line.rstrip('n')
                                                tempList1=line.split(':')
                                                tempList2=tempList1[1]
                                                tempList2=tempList2.rstrip(',')
                                                tempList2=tempList2.split(',')
                                                for item in tempList2:
                                                e=item.split(' ')
                                                tempRow=[tempList1[0], e[0],e[1]]
                                                df.loc[len(df)]=tempRow
                                                print(df)





                                                share|improve this answer













                                                Could I assume that there is just 1 space before 'TERM'?



                                                df=pd.DataFrame(columns=['ID','Term','Weight'])
                                                with open('C:/random/d1','r') as readObject:
                                                for line in readObject:
                                                line=line.rstrip('n')
                                                tempList1=line.split(':')
                                                tempList2=tempList1[1]
                                                tempList2=tempList2.rstrip(',')
                                                tempList2=tempList2.split(',')
                                                for item in tempList2:
                                                e=item.split(' ')
                                                tempRow=[tempList1[0], e[0],e[1]]
                                                df.loc[len(df)]=tempRow
                                                print(df)






                                                share|improve this answer












                                                share|improve this answer



                                                share|improve this answer










                                                answered 9 hours ago









                                                RebinRebin

                                                193212




                                                193212























                                                    -3














                                                    1) You can read row by row.



                                                    2) Then you can separate by ':' for your index and ',' for the values



                                                    1)



                                                    with open('path/filename.txt','r') as filename:
                                                    content = filename.readlines()


                                                    2)
                                                    content = [x.split(':') for x in content]



                                                    This will give you the following result:



                                                    content =[
                                                    ['1','frack 0.733, shale 0.700,'],
                                                    ['10', 'space 0.645, station 0.327, nasa 0.258,'],
                                                    ['4','celebr 0.262, bahar 0.345 ']]





                                                    share|improve this answer



















                                                    • 3





                                                      Your result is not the result asked for in the question.

                                                      – GiraffeMan91
                                                      9 hours ago
















                                                    -3














                                                    1) You can read row by row.



                                                    2) Then you can separate by ':' for your index and ',' for the values



                                                    1)



                                                    with open('path/filename.txt','r') as filename:
                                                    content = filename.readlines()


                                                    2)
                                                    content = [x.split(':') for x in content]



                                                    This will give you the following result:



                                                    content =[
                                                    ['1','frack 0.733, shale 0.700,'],
                                                    ['10', 'space 0.645, station 0.327, nasa 0.258,'],
                                                    ['4','celebr 0.262, bahar 0.345 ']]





                                                    share|improve this answer



















                                                    • 3





                                                      Your result is not the result asked for in the question.

                                                      – GiraffeMan91
                                                      9 hours ago














                                                    -3












                                                    -3








                                                    -3







                                                    1) You can read row by row.



                                                    2) Then you can separate by ':' for your index and ',' for the values



                                                    1)



                                                    with open('path/filename.txt','r') as filename:
                                                    content = filename.readlines()


                                                    2)
                                                    content = [x.split(':') for x in content]



                                                    This will give you the following result:



                                                    content =[
                                                    ['1','frack 0.733, shale 0.700,'],
                                                    ['10', 'space 0.645, station 0.327, nasa 0.258,'],
                                                    ['4','celebr 0.262, bahar 0.345 ']]





                                                    share|improve this answer













                                                    1) You can read row by row.



                                                    2) Then you can separate by ':' for your index and ',' for the values



                                                    1)



                                                    with open('path/filename.txt','r') as filename:
                                                    content = filename.readlines()


                                                    2)
                                                    content = [x.split(':') for x in content]



                                                    This will give you the following result:



                                                    content =[
                                                    ['1','frack 0.733, shale 0.700,'],
                                                    ['10', 'space 0.645, station 0.327, nasa 0.258,'],
                                                    ['4','celebr 0.262, bahar 0.345 ']]






                                                    share|improve this answer












                                                    share|improve this answer



                                                    share|improve this answer










                                                    answered 9 hours ago









                                                    CedricLyCedricLy

                                                    11




                                                    11








                                                    • 3





                                                      Your result is not the result asked for in the question.

                                                      – GiraffeMan91
                                                      9 hours ago














                                                    • 3





                                                      Your result is not the result asked for in the question.

                                                      – GiraffeMan91
                                                      9 hours ago








                                                    3




                                                    3





                                                    Your result is not the result asked for in the question.

                                                    – GiraffeMan91
                                                    9 hours ago





                                                    Your result is not the result asked for in the question.

                                                    – GiraffeMan91
                                                    9 hours ago


















                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Stack Overflow!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55799784%2fconverting-a-text-document-with-special-format-to-pandas-dataframe%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Why do type traits not work with types in namespace scope?What are POD types in C++?Why can templates only be...

                                                    Will tsunami waves travel forever if there was no land?Why do tsunami waves begin with the water flowing away...

                                                    Simple Scan not detecting my scanner (Brother DCP-7055W)Brother MFC-L2700DW printer can print, can't...